37 research outputs found

    Open vs Closed Access Femtocells in the Uplink

    Full text link
    Femtocells are assuming an increasingly important role in the coverage and capacity of cellular networks. In contrast to existing cellular systems, femtocells are end-user deployed and controlled, randomly located, and rely on third party backhaul (e.g. DSL or cable modem). Femtocells can be configured to be either open access or closed access. Open access allows an arbitrary nearby cellular user to use the femtocell, whereas closed access restricts the use of the femtocell to users explicitly approved by the owner. Seemingly, the network operator would prefer an open access deployment since this provides an inexpensive way to expand their network capabilities, whereas the femtocell owner would prefer closed access, in order to keep the femtocell's capacity and backhaul to himself. We show mathematically and through simulations that the reality is more complicated for both parties, and that the best approach depends heavily on whether the multiple access scheme is orthogonal (TDMA or OFDMA, per subband) or non-orthogonal (CDMA). In a TDMA/OFDMA network, closed-access is typically preferable at high user densities, whereas in CDMA, open access can provide gains of more than 200% for the home user by reducing the near-far problem experienced by the femtocell. The results of this paper suggest that the interests of the femtocell owner and the network operator are more compatible than typically believed, and that CDMA femtocells should be configured for open access whereas OFDMA or TDMA femtocells should adapt to the cellular user density.Comment: 21 pages, 8 figures, 2 tables, submitted to IEEE Trans. on Wireless Communication

    Efficient Measurement Procedure for Access Control to Maximizing Throughput in LTE Femtocell Networks

    Get PDF
    LTE networks are becoming more and more popular nowadays. There are two main problems in implementing LTE networks - coverage and capacity. Both these problems can be solved by deploying femtocells in LTE networks. Femtocells can enhance the capacity and offload traffic from Macrocell networks. There are several issues that must be taken into consideration for the successful deployment of Femtocells. One of the most important issues is mobility management. Since Femtocells will b e deployed densely, randomly, and by the millions, providing and sup porting seamless mobility procedures is essential. Proposed an approach to handle mobility management with access control for several femtocells

    Multi-channel Hybrid Access Femtocells: A Stochastic Geometric Analysis

    Full text link
    For two-tier networks consisting of macrocells and femtocells, the channel access mechanism can be configured to be open access, closed access, or hybrid access. Hybrid access arises as a compromise between open and closed access mechanisms, in which a fraction of available spectrum resource is shared to nonsubscribers while the remaining reserved for subscribers. This paper focuses on a hybrid access mechanism for multi-channel femtocells which employ orthogonal spectrum access schemes. Considering a randomized channel assignment strategy, we analyze the performance in the downlink. Using stochastic geometry as technical tools, we model the distribution of femtocells as Poisson point process or Neyman-Scott cluster process and derive the distributions of signal-to-interference-plus-noise ratios, and mean achievable rates, of both nonsubscribers and subscribers. The established expressions are amenable to numerical evaluation, and shed key insights into the performance tradeoff between subscribers and nonsubscribers. The analytical results are corroborated by numerical simulations.Comment: This is the final version, which was accepted in IEEE Transactions on Communication

    Spectrum Sensing with VSS-NLMS Process in Femto/Macro-cell Environments

    Get PDF
    Handover is a process that allows a mobile node to change its attachment point. A mobile node connected to a network can, in order to improve the quality of service, have the need to leave it to connect to a cell either of the same network or of a new network. The present paper introduce three techniques using adaptive Variable Step-Size Least Mean Square (VSSLMS) filter combined with spectrum sensing probability method to detect the triggering of handover in heterogeneous LTE networks. These techniques are Normalized LMS (NLMS), Kwong-NLMS and Li-NLMS. The simulation environment is composed of two femtocells belonging to a macrocell. Five User Equipements (UEs) are positioned in one femtocell and are assumed closest to its circumference. Simulation results show that sensing probability with Li-NLMS algorithm has a better performance compared with classical NLMS and Kwong-NLMS

    Open, Closed, and Shared Access Femtocells in the Downlink

    Full text link
    A fundamental choice in femtocell deployments is the set of users which are allowed to access each femtocell. Closed access restricts the set to specifically registered users, while open access allows any mobile subscriber to use any femtocell. Which one is preferable depends strongly on the distance between the macrocell base station (MBS) and femtocell. The main results of the paper are lemmas which provide expressions for the SINR distribution for various zones within a cell as a function of this MBS-femto distance. The average sum throughput (or any other SINR-based metric) of home users and cellular users under open and closed access can be readily determined from these expressions. We show that unlike in the uplink, the interests of home and cellular users are in conflict, with home users preferring closed access and cellular users preferring open access. The conflict is most pronounced for femtocells near the cell edge, when there are many cellular users and fewer femtocells. To mitigate this conflict, we propose a middle way which we term shared access in which femtocells allocate an adjustable number of time-slots between home and cellular users such that a specified minimum rate for each can be achieved. The optimal such sharing fraction is derived. Analysis shows that shared access achieves at least the overall throughput of open access while also satisfying rate requirements, while closed access fails for cellular users and open access fails for the home user.Comment: 26 pages, 8 figures, Submitted to IEEE Transactions on Wireless Communication

    Outage Analysis of Uplink Two-tier Networks

    Full text link
    Employing multi-tier networks is among the most promising approaches to address the rapid growth of the data demand in cellular networks. In this paper, we study a two-tier uplink cellular network consisting of femtocells and a macrocell. Femto base stations, and femto and macro users are assumed to be spatially deployed based on independent Poisson point processes. We consider an open access assignment policy, where each macro user based on the ratio between its distances from its nearest femto access point (FAP) and from the macro base station (MBS) is assigned to either of them. By tuning the threshold, this policy allows controlling the coverage areas of FAPs. For a fixed threshold, femtocells coverage areas depend on their distances from the MBS; Those closest to the fringes will have the largest coverage areas. Under this open-access policy, ignoring the additive noise, we derive analytical upper and lower bounds on the outage probabilities of femto users and macro users that are subject to fading and path loss. We also study the effect of the distance from the MBS on the outage probability experienced by the users of a femtocell. In all cases, our simulation results comply with our analytical bounds
    corecore