15,216 research outputs found

    Supporting ethnographic studies of ubiquitous computing in the wild

    Get PDF
    Ethnography has become a staple feature of IT research over the last twenty years, shaping our understanding of the social character of computing systems and informing their design in a wide variety of settings. The emergence of ubiquitous computing raises new challenges for ethnography however, distributing interaction across a burgeoning array of small, mobile devices and online environments which exploit invisible sensing systems. Understanding interaction requires ethnographers to reconcile interactions that are, for example, distributed across devices on the street with online interactions in order to assemble coherent understandings of the social character and purchase of ubiquitous computing systems. We draw upon four recent studies to show how ethnographers are replaying system recordings of interaction alongside existing resources such as video recordings to do this and identify key challenges that need to be met to support ethnographic study of ubiquitous computing in the wild

    Scripted GUI Testing of Android Apps: A Study on Diffusion, Evolution and Fragility

    Full text link
    Background. Evidence suggests that mobile applications are not thoroughly tested as their desktop counterparts. In particular GUI testing is generally limited. Like web-based applications, mobile apps suffer from GUI test fragility, i.e. GUI test classes failing due to minor modifications in the GUI, without the application functionalities being altered. Aims. The objective of our study is to examine the diffusion of GUI testing on Android, and the amount of changes required to keep test classes up to date, and in particular the changes due to GUI test fragility. We define metrics to characterize the modifications and evolution of test classes and test methods, and proxies to estimate fragility-induced changes. Method. To perform our experiments, we selected six widely used open-source tools for scripted GUI testing of mobile applications previously described in the literature. We have mined the repositories on GitHub that used those tools, and computed our set of metrics. Results. We found that none of the considered GUI testing frameworks achieved a major diffusion among the open-source Android projects available on GitHub. For projects with GUI tests, we found that test suites have to be modified often, specifically 5\%-10\% of developers' modified LOCs belong to tests, and that a relevant portion (60\% on average) of such modifications are induced by fragility. Conclusions. Fragility of GUI test classes constitute a relevant concern, possibly being an obstacle for developers to adopt automated scripted GUI tests. This first evaluation and measure of fragility of Android scripted GUI testing can constitute a benchmark for developers, and the basis for the definition of a taxonomy of fragility causes, and actionable guidelines to mitigate the issue.Comment: PROMISE'17 Conference, Best Paper Awar

    Automatically Discovering, Reporting and Reproducing Android Application Crashes

    Full text link
    Mobile developers face unique challenges when detecting and reporting crashes in apps due to their prevailing GUI event-driven nature and additional sources of inputs (e.g., sensor readings). To support developers in these tasks, we introduce a novel, automated approach called CRASHSCOPE. This tool explores a given Android app using systematic input generation, according to several strategies informed by static and dynamic analyses, with the intrinsic goal of triggering crashes. When a crash is detected, CRASHSCOPE generates an augmented crash report containing screenshots, detailed crash reproduction steps, the captured exception stack trace, and a fully replayable script that automatically reproduces the crash on a target device(s). We evaluated CRASHSCOPE's effectiveness in discovering crashes as compared to five state-of-the-art Android input generation tools on 61 applications. The results demonstrate that CRASHSCOPE performs about as well as current tools for detecting crashes and provides more detailed fault information. Additionally, in a study analyzing eight real-world Android app crashes, we found that CRASHSCOPE's reports are easily readable and allow for reliable reproduction of crashes by presenting more explicit information than human written reports.Comment: 12 pages, in Proceedings of 9th IEEE International Conference on Software Testing, Verification and Validation (ICST'16), Chicago, IL, April 10-15, 2016, pp. 33-4

    Out-Of-Place debugging: a debugging architecture to reduce debugging interference

    Get PDF
    Context. Recent studies show that developers spend most of their programming time testing, verifying and debugging software. As applications become more and more complex, developers demand more advanced debugging support to ease the software development process. Inquiry. Since the 70's many debugging solutions were introduced. Amongst them, online debuggers provide a good insight on the conditions that led to a bug, allowing inspection and interaction with the variables of the program. However, most of the online debugging solutions introduce \textit{debugging interference} to the execution of the program, i.e. pauses, latency, and evaluation of code containing side-effects. Approach. This paper investigates a novel debugging technique called \outofplace debugging. The goal is to minimize the debugging interference characteristic of online debugging while allowing online remote capabilities. An \outofplace debugger transfers the program execution and application state from the debugged application to the debugger application, both running in different processes. Knowledge. On the one hand, \outofplace debugging allows developers to debug applications remotely, overcoming the need of physical access to the machine where the debugged application is running. On the other hand, debugging happens locally on the remote machine avoiding latency. That makes it suitable to be deployed on a distributed system and handle the debugging of several processes running in parallel. Grounding. We implemented a concrete out-of-place debugger for the Pharo Smalltalk programming language. We show that our approach is practical by performing several benchmarks, comparing our approach with a classic remote online debugger. We show that our prototype debugger outperforms by a 1000 times a traditional remote debugger in several scenarios. Moreover, we show that the presence of our debugger does not impact the overall performance of an application. Importance. This work combines remote debugging with the debugging experience of a local online debugger. Out-of-place debugging is the first online debugging technique that can minimize debugging interference while debugging a remote application. Yet, it still keeps the benefits of online debugging ( e.g. step-by-step execution). This makes the technique suitable for modern applications which are increasingly parallel, distributed and reactive to streams of data from various sources like sensors, UI, network, etc
    • 

    corecore