3 research outputs found

    MEADE: Towards a Malicious Email Attachment Detection Engine

    Full text link
    Malicious email attachments are a growing delivery vector for malware. While machine learning has been successfully applied to portable executable (PE) malware detection, we ask, can we extend similar approaches to detect malware across heterogeneous file types commonly found in email attachments? In this paper, we explore the feasibility of applying machine learning as a static countermeasure to detect several types of malicious email attachments including Microsoft Office documents and Zip archives. To this end, we collected a dataset of over 5 million malicious/benign Microsoft Office documents from VirusTotal for evaluation as well as a dataset of benign Microsoft Office documents from the Common Crawl corpus, which we use to provide more realistic estimates of thresholds for false positive rates on in-the-wild data. We also collected a dataset of approximately 500k malicious/benign Zip archives, which we scraped using the VirusTotal service, on which we performed a separate evaluation. We analyze predictive performance of several classifiers on each of the VirusTotal datasets using a 70/30 train/test split on first seen time, evaluating feature and classifier types that have been applied successfully in commercial antimalware products and R&D contexts. Using deep neural networks and gradient boosted decision trees, we are able to obtain ROC curves with > 0.99 AUC on both Microsoft Office document and Zip archive datasets. Discussion of deployment viability in various antimalware contexts is provided.Comment: Pre-print of a manuscript submitted to IEEE Symposium on Technologies for Homeland Security (HST

    Recent Advances in Open Set Recognition: A Survey

    Full text link
    In real-world recognition/classification tasks, limited by various objective factors, it is usually difficult to collect training samples to exhaust all classes when training a recognizer or classifier. A more realistic scenario is open set recognition (OSR), where incomplete knowledge of the world exists at training time, and unknown classes can be submitted to an algorithm during testing, requiring the classifiers to not only accurately classify the seen classes, but also effectively deal with the unseen ones. This paper provides a comprehensive survey of existing open set recognition techniques covering various aspects ranging from related definitions, representations of models, datasets, evaluation criteria, and algorithm comparisons. Furthermore, we briefly analyze the relationships between OSR and its related tasks including zero-shot, one-shot (few-shot) recognition/learning techniques, classification with reject option, and so forth. Additionally, we also overview the open world recognition which can be seen as a natural extension of OSR. Importantly, we highlight the limitations of existing approaches and point out some promising subsequent research directions in this field.Comment: Accepted by IEEE TPAM

    A Review of Computer Vision Methods in Network Security

    Full text link
    Network security has become an area of significant importance more than ever as highlighted by the eye-opening numbers of data breaches, attacks on critical infrastructure, and malware/ransomware/cryptojacker attacks that are reported almost every day. Increasingly, we are relying on networked infrastructure and with the advent of IoT, billions of devices will be connected to the internet, providing attackers with more opportunities to exploit. Traditional machine learning methods have been frequently used in the context of network security. However, such methods are more based on statistical features extracted from sources such as binaries, emails, and packet flows. On the other hand, recent years witnessed a phenomenal growth in computer vision mainly driven by the advances in the area of convolutional neural networks. At a glance, it is not trivial to see how computer vision methods are related to network security. Nonetheless, there is a significant amount of work that highlighted how methods from computer vision can be applied in network security for detecting attacks or building security solutions. In this paper, we provide a comprehensive survey of such work under three topics; i) phishing attempt detection, ii) malware detection, and iii) traffic anomaly detection. Next, we review a set of such commercial products for which public information is available and explore how computer vision methods are effectively used in those products. Finally, we discuss existing research gaps and future research directions, especially focusing on how network security research community and the industry can leverage the exponential growth of computer vision methods to build much secure networked systems
    corecore