4,440 research outputs found

    On the Cauchy Completeness of the Constructive Cauchy Reals

    Full text link
    It is consistent with constructive set theory (without Countable Choice, clearly) that the Cauchy reals (equivalence classes of Cauchy sequences of rationals) are not Cauchy complete. Related results are also shown, such as that a Cauchy sequence of rationals may not have a modulus of convergence, and that a Cauchy sequence of Cauchy sequences may not converge to a Cauchy sequence, among others

    Lukasiewicz mu-Calculus

    Get PDF
    We consider state-based systems modelled as coalgebras whose type incorporates branching, and show that by suitably adapting the definition of coalgebraic bisimulation, one obtains a general and uniform account of the linear-time behaviour of a state in such a coalgebra. By moving away from a boolean universe of truth values, our approach can measure the extent to which a state in a system with branching is able to exhibit a particular linear-time behaviour. This instantiates to measuring the probability of a specific behaviour occurring in a probabilistic system, or measuring the minimal cost of exhibiting a specific behaviour in the case of weighted computations

    Axiomatics for the external numbers of nonstandard analysis

    Get PDF
    Neutrices are additive subgroups of a nonstandard model of the real numbers. An external number is the algebraic sum of a nonstandard real number and a neutrix. Due to the stability by some shifts, external numbers may be seen as mathematical models for orders of magnitude. The algebraic properties of external numbers gave rise to the so-called solids, which are extensions of ordered fields, having a restricted distributivity law. However, necessary and sufficient conditions can be given for distributivity to hold. In this article we develop an axiomatics for the external numbers. The axioms are similar to, but mostly somewhat weaker than the axioms for the real numbers and deal with algebraic rules, Dedekind completeness and the Archimedean property. A structure satisfying these axioms is called a complete arithmetical solid. We show that the external numbers form a complete arithmetical solid, implying the consistency of the axioms presented. We also show that the set of precise elements (elements with minimal magnitude) has a built-in nonstandard model of the rationals. Indeed the set of precise elements is situated between the nonstandard rationals and the nonstandard reals whereas the set of non-precise numbers is completely determined
    corecore