4,942 research outputs found

    Desiderata for an ontology of diseases for the annotation of biological datasets.

    Get PDF
    There is a plethora of disease ontologies available, all potentially useful for the annotation of biological datasets. We define seven desirable features for such ontologies and examine whether or not these features are supported by eleven disease ontologies. The four ontologies most closely aligned with our desiderata are Disease Ontology, SNOMED CT, NCI thesaurus and UMLS

    Ontology as the core discipline of biomedical informatics: Legacies of the past and recommendations for the future direction of research

    Get PDF
    The automatic integration of rapidly expanding information resources in the life sciences is one of the most challenging goals facing biomedical research today. Controlled vocabularies, terminologies, and coding systems play an important role in realizing this goal, by making it possible to draw together information from heterogeneous sources – for example pertaining to genes and proteins, drugs and diseases – secure in the knowledge that the same terms will also represent the same entities on all occasions of use. In the naming of genes, proteins, and other molecular structures, considerable efforts are under way to reduce the effects of the different naming conventions which have been spawned by different groups of researchers. Electronic patient records, too, increasingly involve the use of standardized terminologies, and tremendous efforts are currently being devoted to the creation of terminology resources that can meet the needs of a future era of personalized medicine, in which genomic and clinical data can be aligned in such a way that the corresponding information systems become interoperable

    Towards Desiderata for an Ontology of Diseases for the Annotation of Biological Datasets

    Get PDF
    There is a plethora of disease ontologies available, all potentially useful for the annotation of biological datasets. We define seven desirable features for such ontologies and examine whether or not these features are supported by eleven disease ontologies. The four ontologies most closely aligned with our desiderata are Disease Ontology, SNOMED CT, NCI thesaurus and UMLS

    LexOWL: A Bridge from LexGrid to OWL

    Get PDF
    The Lexical Grid project is an on-going community driven initiative that provides a common terminology model to represent multiple vocabulary and ontology sources as well as a scalable and robust API for accessing such information. In order to add more powerful functionalities to the existing infrastructure and align LexGrid more closely with various Semantic Web technologies, we introduce the LexOWL project for representing the ontologies modeled within the LexGrid environment in OWL (Web Ontology Language). The crux of this effort is to create a “bridge” that functionally connects the LexBIG (a LexGrid API) and the OWL API (an interface that implements OWL) seamlessly. In this paper, we discuss the key aspects of designing and implementing the LexOWL bridge. We compared LexOWL with other OWL converting tools and conclude that LexOWL provides an OWL mapping and converting tool with well-defined interoperability for information in the biomedical domain

    National Center for Biomedical Ontology: Advancing biomedicine through structured organization of scientific knowledge

    Get PDF
    The National Center for Biomedical Ontology is a consortium that comprises leading informaticians, biologists, clinicians, and ontologists, funded by the National Institutes of Health (NIH) Roadmap, to develop innovative technology and methods that allow scientists to record, manage, and disseminate biomedical information and knowledge in machine-processable form. The goals of the Center are (1) to help unify the divergent and isolated efforts in ontology development by promoting high quality open-source, standards-based tools to create, manage, and use ontologies, (2) to create new software tools so that scientists can use ontologies to annotate and analyze biomedical data, (3) to provide a national resource for the ongoing evaluation, integration, and evolution of biomedical ontologies and associated tools and theories in the context of driving biomedical projects (DBPs), and (4) to disseminate the tools and resources of the Center and to identify, evaluate, and communicate best practices of ontology development to the biomedical community. Through the research activities within the Center, collaborations with the DBPs, and interactions with the biomedical community, our goal is to help scientists to work more effectively in the e-science paradigm, enhancing experiment design, experiment execution, data analysis, information synthesis, hypothesis generation and testing, and understand human disease

    Using philosophy to improve the coherence and interoperability of applications ontologies: A field report on the collaboration of IFOMIS and L&C

    Get PDF
    The collaboration of Language and Computing nv (L&C) and the Institute for Formal Ontology and Medical Information Science (IFOMIS) is guided by the hypothesis that quality constraints on ontologies for software ap-plication purposes closely parallel the constraints salient to the design of sound philosophical theories. The extent of this parallel has been poorly appreciated in the informatics community, and it turns out that importing the benefits of phi-losophical insight and methodology into application domains yields a variety of improvements. L&C’s LinKBase® is one of the world’s largest medical domain ontologies. Its current primary use pertains to natural language processing ap-plications, but it also supports intelligent navigation through a range of struc-tured medical and bioinformatics information resources, such as SNOMED-CT, Swiss-Prot, and the Gene Ontology (GO). In this report we discuss how and why philosophical methods improve both the internal coherence of LinKBase®, and its capacity to serve as a translation hub, improving the interoperability of the ontologies through which it navigates

    Infectious Disease Ontology

    Get PDF
    Technological developments have resulted in tremendous increases in the volume and diversity of the data and information that must be processed in the course of biomedical and clinical research and practice. Researchers are at the same time under ever greater pressure to share data and to take steps to ensure that data resources are interoperable. The use of ontologies to annotate data has proven successful in supporting these goals and in providing new possibilities for the automated processing of data and information. In this chapter, we describe different types of vocabulary resources and emphasize those features of formal ontologies that make them most useful for computational applications. We describe current uses of ontologies and discuss future goals for ontology-based computing, focusing on its use in the field of infectious diseases. We review the largest and most widely used vocabulary resources relevant to the study of infectious diseases and conclude with a description of the Infectious Disease Ontology (IDO) suite of interoperable ontology modules that together cover the entire infectious disease domain

    Ontological theory for ontological engineering: Biomedical systems information integration

    Get PDF
    Software application ontologies have the potential to become the keystone in state-of-the-art information management techniques. It is expected that these ontologies will support the sort of reasoning power required to navigate large and complex terminologies correctly and efficiently. Yet, there is one problem in particular that continues to stand in our way. As these terminological structures increase in size and complexity, and the drive to integrate them inevitably swells, it is clear that the level of consistency required for such navigation will become correspondingly difficult to maintain. While descriptive semantic representations are certainly a necessary component to any adequate ontology-based system, so long as ontology engineers rely solely on semantic information, without a sound ontological theory informing their modeling decisions, this goal will surely remain out of reach. In this paper we describe how Language and Computing nv (L&C), along with The Institute for Formal Ontology and Medical Information Sciences (IFOMIS), are working towards developing and implementing just such a theory, combining the open software architecture of L&C’s LinkSuiteTM with the philosophical rigor of IFOMIS’s Basic Formal Ontology. In this way we aim to move beyond the more or less simple controlled vocabularies that have dominated the industry to date

    Mistakes in medical ontologies: Where do they come from and how can they be detected?

    Get PDF
    We present the details of a methodology for quality assurance in large medical terminologies and describe three algorithms that can help terminology developers and users to identify potential mistakes. The methodology is based in part on linguistic criteria and in part on logical and ontological principles governing sound classifications. We conclude by outlining the results of applying the methodology in the form of a taxonomy different types of errors and potential errors detected in SNOMED-CT

    Ontology and medical terminology: Why description logics are not enough

    Get PDF
    Ontology is currently perceived as the solution of first resort for all problems related to biomedical terminology, and the use of description logics is seen as a minimal requirement on adequate ontology-based systems. Contrary to common conceptions, however, description logics alone are not able to prevent incorrect representations; this is because they do not come with a theory indicating what is computed by using them, just as classical arithmetic does not tell us anything about the entities that are added or subtracted. In this paper we shall show that ontology is indeed an essential part of any solution to the problems of medical terminology – but only if it is understood in the right sort of way. Ontological engineering, we shall argue, should in every case go hand in hand with a sound ontological theory
    • …
    corecore