4,554 research outputs found

    Worst-case Optimal Query Answering for Greedy Sets of Existential Rules and Their Subclasses

    Full text link
    The need for an ontological layer on top of data, associated with advanced reasoning mechanisms able to exploit the semantics encoded in ontologies, has been acknowledged both in the database and knowledge representation communities. We focus in this paper on the ontological query answering problem, which consists of querying data while taking ontological knowledge into account. More specifically, we establish complexities of the conjunctive query entailment problem for classes of existential rules (also called tuple-generating dependencies, Datalog+/- rules, or forall-exists-rules. Our contribution is twofold. First, we introduce the class of greedy bounded-treewidth sets (gbts) of rules, which covers guarded rules, and their most well-known generalizations. We provide a generic algorithm for query entailment under gbts, which is worst-case optimal for combined complexity with or without bounded predicate arity, as well as for data complexity and query complexity. Secondly, we classify several gbts classes, whose complexity was unknown, with respect to combined complexity (with both unbounded and bounded predicate arity) and data complexity to obtain a comprehensive picture of the complexity of existential rule fragments that are based on diverse guardedness notions. Upper bounds are provided by showing that the proposed algorithm is optimal for all of them

    Query Rewriting and Optimization for Ontological Databases

    Full text link
    Ontological queries are evaluated against a knowledge base consisting of an extensional database and an ontology (i.e., a set of logical assertions and constraints which derive new intensional knowledge from the extensional database), rather than directly on the extensional database. The evaluation and optimization of such queries is an intriguing new problem for database research. In this paper, we discuss two important aspects of this problem: query rewriting and query optimization. Query rewriting consists of the compilation of an ontological query into an equivalent first-order query against the underlying extensional database. We present a novel query rewriting algorithm for rather general types of ontological constraints which is well-suited for practical implementations. In particular, we show how a conjunctive query against a knowledge base, expressed using linear and sticky existential rules, that is, members of the recently introduced Datalog+/- family of ontology languages, can be compiled into a union of conjunctive queries (UCQ) against the underlying database. Ontological query optimization, in this context, attempts to improve this rewriting process so to produce possibly small and cost-effective UCQ rewritings for an input query.Comment: arXiv admin note: text overlap with arXiv:1312.5914 by other author

    Bounded Implication for Existential Rules

    Get PDF
    The property of boundedness in Datalog formalizes whether a set of rules can be equivalently expressed by a non-recursive set of rules. Existential rules extend Datalog to the presence of existential variables in rule heads. In this paper, we introduce and study notions of boundedness for existential rules. We provide a notion of weak boundedness and a notion of strong boundedness for a rule set, and show that they correspond, respectively, to the notions of first-order rewritability of atomic queries and first-order rewritability of conjunctive queries over the set. While weak and strong boundedness are in general not equivalent, we show that, for some notable subclasses of existential rules, i.e., Datalog, single-head binary rules, and frontier-guarded rules, the two notions coincide

    On the first-order rewritability of conjunctive queries over binary guarded existential rules

    Get PDF
    We study conjunctive query answering and first-order rewritability of conjunctive queries for binary guarded existential rules. In particular, we prove that the problem of establishing whether a given set of binary guarded existential rules is such that all conjunctive queries admit a first-order rewriting is decidable, and present a technique for solving this problem. These results have a important practical impact, since they make it possible to identify those sets of binary guarded existential rules for which it is possible to answer every conjunctive query through query rewriting and standard evaluation of a first-order query (actually, a union of conjunctive queries) over a relational database system
    • …
    corecore