679 research outputs found

    Design optimization and performance analysis methodology for PMSMs to improve efficiency in hydraulic applications

    Get PDF
    Pla de Doctorats Industrials de la Generalitat de CatalunyaIn the recent years, water pumping and other hydraulic applications are increasingly demanding motors capable to operate under different working conditions, including variable pressure and volumetric flow demands. Moreover, the technical evolution trend of pumping components is to minimize the size, offering compact and adaptable hydraulic units. Hence, the need to optimize the electric motor part to reduce the volume according this trend, maximizing the efficiency, decreasing material and fabrication costs, reducing noise and improving thermal dissipation have originated the research field of this project. So far different methodologies have been focused on designing electrical machines considering few aspects, such as the rated conditions with some size limitations. In addition, the optimization strategies have been based on single operation conditions, improving multiple aspects but not considering the overall performance of the machine and its influence with the working system. This research changes the design and optimization paradigm, focusing on defining beforehand the desired performance of the electrical machine in relation with the application system. The customization is not limited to an operating point but to the whole performance space, which in this case is the torque-speed area. Thus, the designer has plenty of freedom to study the system, and define the desired motor performance establishing the size, thermal and mechanical limitations from the beginning of the process. Moreover, when designing and optimizing electrical machines, the experimental validation is of major importance. From an industrial scope so far, the testing methodologies are focused on evaluating point by point the electrical machine performance, being a robust and trustable way to measure and validate the electrical machine characteristics. Nevertheless,this method requires a large time to prepare the experimental setup and to evaluate the whole motor performance. For this reason, there is a special interest on improving parameter estimation and performance evaluation techniques for electrical machines to reduce evaluation time, setup complexity and increase the number of physical magnitudes to measure in order to have deeper information. This research also develops methodologies to extend the electrical machine experimental validation providing information to evaluate the motor performance. This doctoral thesis has been developed with a collaboration agreement between UPC and the company MIDTAL TALENTOS S.L. The thesis is included within the Industrial Doctorates program 2018 DI 019 promoted by the Generalitat de Catalunya.En los últimos años, el bombeo de agua, entre otras aplicaciones hidráulicas, exige cada vez más motores capaces de operar en diferentes condiciones de trabajo, incluyendo las demandas variables de presión y caudal volumétrico. Además, la evolución técnica de los componentes de bombeo está cada vez más minimizando el tamaño ofreciendo unidades hidráulicas compactas y adaptables. De ahí la necesidad de optimizar la parte del motor eléctrico para reducir el volumen de acuerdo con esta tendencia, maximizando la eficiencia, disminuyendo los costos de material y fabricación, reduciendo el ruido y mejorando la disipación térmica. Todos estos factores han creado el campo de investigación sobre el cual se desarrolla este proyecto. Hasta ahora las metodologías se han centrado en diseñar las máquinas eléctricas considerando unos pocos aspectos técnicos, como las condiciones nominales con algunas limitaciones de tamaño. Además, las estrategias de optimización se han basado en condiciones de operación única, mejorando múltiples aspectos sin considerar el rendimiento general de la máquina y su influencia en el sistema de trabajo. Esta investigación cambia el paradigma de diseño y optimización centrándose en definir de antemano el rendimiento deseado de la máquina eléctrica en relación con el sistema de aplicación. La personalización no se limita a un punto de funcionamiento sino a todo el espacio de operación, que en este caso se expresa en el espacio par-velocidad. Así, el diseñador tiene libertad para estudiar el sistema, definir el rendimiento deseado del motor estableciendo el tamaño, limitaciones térmicas y mecánicas desde el inicio del proceso. Además, a la hora de diseñar y optimizar máquinas eléctricas, la validación experimental es de gran importancia. En el ámbito industrial hasta ahora, las metodologías de ensayo han sido enfocadas a evaluar punto por punto la máquina eléctrica, siendo una forma robusta y confiable de medir y validar sus características. Sin embargo, este método requiere mucho tiempo para preparar la configuración experimental y evaluar el motor en toda su zona de operación. Por esta razón, existe un interés especial en mejorar la estimación de parámetros y las técnicas de evaluación de la operación de las máquinas eléctricas reduciendo tiempo, complejidad y aumentando el número de magnitudes físicas a medir teniendo más información sobre la máquina. Esta investigación también desarrolla metodologías para extender la validación experimental de la máquina eléctrica proporcionando información para evaluar el rendimiento del motor. Esta tesis doctoral ha sido desarrollada con un convenio de colaboración entre la Universidad Politécnica de Cataluña UPC y la empresa MIDTAL TALENTOS S.L. La tesis se engloba dentro del plan de Doctorados Industriales 2018 DI 019 impulsado por la Generalitat de Catalunya.Postprint (published version

    Multi-level-objective design optimization of permanent magnet synchronous wind generator and solar photovoltaic system for an urban environment application

    Get PDF
    This Ph.D. thesis illustrates a novel study on the analytical and numerical design optimization of radial-flux permanent magnet synchronous wind generators (PMSGs) for small power generation in an urban area, in which an outer rotor topology with a closed-slot stator is employed. The electromagnetic advantages of a double-layer fractional concentration non-overlapping winding configuration are discussed. The analytical behavior of a PMSG is studied in detail; especially for magnetic flux density distribution, time and space harmonics, flux linkages, back-EMF, cogging torque, torque, output power, efficiency, and iron losses computation. The electromagnetic behavior of PMSGs are evaluated when a number of various Halbach array magnetization topologies are presented to maximize the generator’s performance. In addition, the thermal behavior of the PMSG is improved using an innovative natural air-cooling system for rated speed and higher to decrease the machine’s heat mainly at the stator teeth. The analytical investigation is verified via 2-D and 3-D finite element analysis along with a good experimental agreement. Design optimization of electrical machines plays the deterministic role in performance improvements such as the magnetization pattern, output power, and efficiency maximization, as well as losses and material cost minimization. This dissertation proposes a novel multi-objective design optimization technique using a dual-level response surface methodology (D-RSM) and Booth’s algorithm (coupled to a memetic algorithm known as simulated annealing) to maximize the output power and minimize material cost through sizing optimization. Additionally, the efficiency maximization by D-RSM is investigated while the PMSG and drive system are on duty as the whole. It is shown that a better fit is available when utilizing modern design functions such as mixed-resolution central composite (MR-CCD) and mixed-resolution robust (MR-RD), due to controllable and uncontrollable design treatments, and also a Window-Zoom-in approach. The proposed design optimization was verified by an experimental investigation. Additionally, there are several novel studies on vibro-acoustic design optimization of the PMSGs with considering variable speed analysis and natural frequencies using two techniques to minimize the magnetic noise and vibrations. Photovoltaic system design optimization considered of 3-D modeling of an innovative application-oriented urban environment structure, a smart tree for small power generation. The horizon shading is modeled as a broken line superimposed onto the sun path diagram, which can hold any number of height/azimuth points in this original study. The horizon profile is designed for a specific location on the Barcelona coast in Spain and the meteorological data regarding the location of the project was also considered. Furthermore, the input weather data is observed and stored for the whole year (in 2016). These data include, ambient temperature, module’s temperature (open and closed circuits tests), and shading average rate. A novel Pareto-based 3-D analysis was used to identify complete and partial shading of the photovoltaic system. A significant parameter for a photovoltaic (PV) module operation is the nominal operating cell temperature (NOCT). In this research, a glass/glass module has been referenced to the environment based on IEC61215 via a closed-circuit and a resistive load to ensure the module operates at the maximum power point. The proposed technique in this comparative study attempts to minimize the losses in a certain area with improved output energy without compromising the overall efficiency of the system. A Maximum Power Point Track (MPPT) controller is enhanced by utilizing an advanced perturb & observe (P&O) algorithm to maintain the PV operating point at its maximum output under different temperatures and insolation. The most cost-effective design of the PV module is achieved via optimizing installation parameters such as tilt angle, pitch, and shading to improve the energy yield. The variation of un-replicated factorials using a Window-Zoom-in approach is examined to determine the parameter settings and to check the suitability of the design. An experimental investigation was carried out to verify the 3-D shading analysis and NOCT technique for an open-circuit and grid-connected PV module.Esta tesis muestra un novedoso estudio referente al diseño optimizado de forma analítica y numérica de un generador síncrono de imanes permanentes (PMSGs) para una aplicación de microgeneración eólica en un entorno urbano, donde se ha escogido una topología de rotor exterior con un estator de ranuras cerradas. Las ventajas electromagnéticas de los arrollamientos fraccionarios de doble capa, con bobinas concentradas se discuten ampliamente en la parte inicial del diseño del mismo, así como las características de distribución de la inducción, los armónicos espaciales y temporales, la fem generada, el par de cogging así como las características de salida (par, potencia generada, la eficiencia y la distribución y cálculo de las pérdidas en el hierro que son analizadas detalladamente) Posteriormente se evalúan diferentes configuraciones de estructuras de imanes con magnetización Halbach con el fin de maximizar las prestaciones del generador. Adicionalmente se analiza la distribución de temperaturas y su mejora mediante el uso de un novedoso diseño mediante el uso de ventilación natural para velocidades próximas a la nominal y superiores con el fin de disminuir la temperatura de la máquina, principalmente en el diente estatórico. El cálculo analítico se completa mediante simulaciones 2D y 3D utilizando el método de los elementos finitos así como mediante diversas experiencias que validan los modelos y aproximaciones realizadas. Posteriormente se desarrollan algoritmos de optimización aplicados a variables tales como el tipo de magnetización, la potencia de salida, la eficiencia así como la minimización de las pérdidas y el coste de los materiales empleados. En la tesis se proponen un nuevo diseño optimizado basado en una metodología multinivel usando la metodología de superficie de respuesta (D-RSM) y un algoritmo de Booth (maximizando la potencia de salida y minimizando el coste de material empleado) Adicionalmente se investiga la maximización de la eficiencia del generador trabajando conjuntamente con el circuito de salida acoplado. El algoritmo utilizado queda validado mediante la experimentación desarrollada conjuntamente con el mismo. Adicionalmente, se han realizado diversos estudios vibroacústicos trabajando a velocidad variable usando dos técnicas diferentes para reducir el ruido generado y las vibraciones producidas. Posteriormente se considera un sistema fotovoltaico orientado a aplicaciones urbanas que hemos llamado “Smart tree for small power generation” y que consiste en un poste con un generador eólico en la parte superior juntamente con uno o más paneles fotovoltaicos. Este sistema se ha modelado usando metodologías en 3D. Se ha considerado el efecto de las sombras proyectadas por los diversos elementos usando datos meteorológicos y de irradiación solar de la propia ciudad de Barcelona. Usando una metodología basada en un análisis 3D y Pareto se consigue identificar completamente el sistema fotovoltaico; para este sistema se considera la temperatura de la célula fotovoltaica y la carga conectada con el fin de generar un algoritmo de control que permita obtener el punto de trabajo de máxima potencia (MPPT) comprobándose posteriormente el funcionamiento del algoritmo para diversas situaciones de funcionamiento del sistemaLa tesis desenvolupa un nou estudi per al disseny optimitzat, analític i numèric, d’un generador síncron d’imants permanents (PMSGs) per a una aplicació de microgeneració eòlica en aplicacions urbanes, on s’ha escollit una configuració amb rotor exterior i estator amb ranures tancades. Es discuteixen de forma extensa els avantatges electromagnètics dels bobinats fraccionaris de doble capa així com les característiques resultats vers la distribució de les induccions, els harmònics espacials i temporals, la fem generada, el parell de cogging i les característiques de sortida (parell, potencia, eficiència i pèrdues) Tanmateix s’afegeix l’estudi de diferents estructures Halbach per als imants permanents a fi i efecte de maximitzar les característiques del generador. Tot seguit s’analitza la distribució de temperatures i la seva reducció mitjançant la utilització d’una nova metodologia basada en la ventilació natural. Els càlculs analítics es complementen mitjançant anàlisi en 2 i 3 dimensions utilitzant elements finits i diverses experiències que validen els models i aproximacions emprades. Una vegada fixada la geometria inicial es desenvolupen algoritmes d’optimització per a diverses variables (tipus de magnetització dels imants, potencia de sortida, eficiència, minimització de pèrdues i cost dels materials) La tesi planteja una optimització multinivell emprant la metodologia de superfície de resposta i un algoritme de Booth; a més, es realitza la optimització considerant el circuit de sortida. L’algoritme resta validat per la experimentació realitzada. Finalment, s’han considerat diversos estudis vibroacústic treballant a velocitat variable, emprant dues tècniques diferents per a reduir el soroll i les vibracions desenvolupades. Per a finalitzar l’estudi es considera un sistema format per una turbina eòlica instal·lada sobre un pal de llum autònom, els panells fotovoltaics corresponents i el sistema de càrrega. Per a modelitzar l’efecte de l’ombrejat s’ha emprat un model en 3D i les dades del temps i d’irradiació solar de la ciutat de Barcelona. El model s’ha identificat completament i s’ha generat un algoritme de control que considera, a més, l’efecte de la temperatura de la cèl·lula fotovoltaica y la càrrega connectada al sistema per tal d’aconseguir el seguiment del punt de màxima potenciaPostprint (published version

    Identification and Adaptive Control for High-performance AC Drive Systems.

    Full text link
    High-performance AC machinery and drive systems can be found in a variety of applications ranging from motion control to vehicle propulsion. However, machine parameters can vary significantly with electrical frequency, flux levels, and temperature, degrading the performance of the drive system. While adaptive control techniques can be used to estimate machine parameters online, it is sometimes desirable to estimate certain parameters offline. Additionally, parameter identification and control are typically conflicting objectives with identification requiring plant inputs which are rich in harmonics, and control objectives often consisting of regulation to a constant set-point. In this dissertation, we present research which seeks to address these issues for high-performance AC machinery and drive systems. The first part of this dissertation concerns the offline identification of induction machine parameters. Specifically, we have developed a new technique for induction machine parameter identification which can easily be implemented using a voltage-source inverter. The proposed technique is based on fitting steady-state experimental data to the circular stator current locus in the stator flux linkage reference-frame for varying steady-state slip frequencies, and provides accurate estimates of the magnetic parameters, as well as the rotor resistance and core loss conductance. Experimental results for a 43 kW induction machine are provided which demonstrate the utility of the proposed technique by characterizing the machine over a wide range of flux levels, including magnetic saturation. The remainder of this dissertation concerns the development of generalizable design methodologies for Simultaneous Identification and Control (SIC) of overactuated systems via case studies with Permanent Magnet Synchronous Machines (PMSMs). Specifically, we present different approaches to the design of adaptive controllers for PMSMs which exploit overactuation to achieve identification and control objectives simultaneously. The first approach utilizes a disturbance decoupling control law to prevent the excitation input from perturbing the regulated output. The second approach uses a Lyapunov-based adaptive controller to constrain the states to the output error-zeroing manifold on which they are varied to provide excitation for parameter identification. Finally, a receding-horizon control allocation approach is presented which includes a metric for generating persistently exciting reference trajectories.PhDElectrical Engineering: SystemsUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/120862/1/davereed_1.pd

    Applications of Power Electronics:Volume 1

    Get PDF

    Parameter Identification And Fault Detection For Reliable Control Of Permanent Magnet Motors

    Get PDF
    The objective of this dissertation is to develop new fault detection, identification, estimation and control algorithms that will be used to detect winding stator fault, identify the motor parameters and optimally control machine during faulty condition. Quality or proposed algorithms for Fault detection, parameter identification and control under faulty condition will validated through analytical study (Cramer-Rao bound) and simulation. Simulation will be performed for three most applied control schemes: Proportional-Integral-Derivative (PID), Direct Torque Control (DTC) and Field Oriented Control (FOC) for Permanent Magnet Machines. New detection schemes forfault detection, isolation and machine parameter identification are presented and analyzed. Different control schemes as PID, DTC, FOC for Control of PM machines have different control loops and therefore it is probable that fault detection and isolation will have different sensitivity. It is very probable that one of these control schemes (PID, DTC or FOC) are more convenient for fault detection and isolation which this dissertation will analyze through computer simulation and, if laboratory condition exist, also running a physical models

    A Highly Reliable Propulsion System with Onboard Uninterruptible Power Supply for Train Application:Topology and Control

    Get PDF
    Providing uninterrupted electricity service aboard the urban trains is of vital importance not only for reliable signaling and accurate traffic management but also for ensuring the safety of passengers and supplying emergency equipment such as lighting and signage systems. Hence, to alleviate power shortages caused by power transmission failures while the uninterruptible power supplies installed in the railway stations are not available, this paper suggests an innovative traction drive topology which is equipped by an onboard hybrid energy storage system for railway vehicles. Besides, to limit currents magnitudes and voltages variations of the feeder during train acceleration and to recuperate braking energy during train deceleration, an energy management strategy is presented. Moreover, a new optimal model predictive method is developed to control the currents of converters and storages as well as the speeds of the two open-end-windings permanent-magnet-synchronous-machines in the intended modular drive, under their constraints. Although to improve control dynamic performance, the control laws are designed as a set of piecewise affine functions from the control signals based on an offline procedure, the controller can still withstand real-time non-measurable disturbances. The effectiveness of proposed multifunctional propulsion topology and the feasibility of the designed controller are demonstrated by simulation and experimental results

    Advanced Fault Detection Methods for Permanent Magnets Synchronous Machines

    Get PDF
    The trend in recent years of transport electrification has significantly increased the demand for reliability and availability of electric drives, particularly in those employing Permanent Magnet Synchronous Machines (PMSM), often selected due to their high efficiency and energy density. Fault detection has been identified as one of the key aspects to cover such demand. Stator winding faults are known to be the second most common type of fault, after bearing fault. An extensive literature review has shown that, although a number of methods has been proposed to address this type of fault, no tool of general application, capable of dealing effectively with fault detection under transient conditions unrelated to the fault, has been proposed up to date. This thesis has made contributions to modelling, real-time emulation and stator winding fault detection of PMSM. Fault detection has been carried out through model-based and signal-based methods with a specific aim at operation during transient conditions. Furthermore, fault classification methods already available have been implemented with features computed by proposed signal-based fault detection methods. The main conclusion drawn from this thesis is that model-based fault detection methods, particularly those based on residuals, appear to be better suited for transient conditions analysis, as opposed to signal-based fault detection methods. However, it is expected that a combination of the two (model/signal) would yield the best results

    Advances in Rotating Electric Machines

    Get PDF
    It is difficult to imagine a modern society without rotating electric machines. Their use has been increasing not only in the traditional fields of application but also in more contemporary fields, including renewable energy conversion systems, electric aircraft, aerospace, electric vehicles, unmanned propulsion systems, robotics, etc. This has contributed to advances in the materials, design methodologies, modeling tools, and manufacturing processes of current electric machines, which are characterized by high compactness, low weight, high power density, high torque density, and high reliability. On the other hand, the growing use of electric machines and drives in more critical applications has pushed forward the research in the area of condition monitoring and fault tolerance, leading to the development of more reliable diagnostic techniques and more fault-tolerant machines. This book presents and disseminates the most recent advances related to the theory, design, modeling, application, control, and condition monitoring of all types of rotating electric machines

    Modelling and Detecting Faults of Permanent Magnet Synchronous Motors in Dynamic Operations

    Get PDF
    Paper VI is excluded from the dissertation until the article will be published.Permanent magnet synchronous motors (PMSMs) have played a key role in commercial and industrial applications, i.e. electric vehicles and wind turbines. They are popular due to their high efficiency, control simplification and large torque-to-size ratio although they are expensive. A fault will eventually occur in an operating PMSM, either by improper maintenance or wear from thermal and mechanical stresses. The most frequent PMSM faults are bearing faults, short-circuit and eccentricity. PMSM may also suffer from demagnetisation, which is unique in permanent magnet machines. Condition monitoring or fault diagnosis schemes are necessary for detecting and identifying these faults early in their incipient state, e.g. partial demagnetisation and inter-turn short circuit. Successful fault classification will ensure safe operations, speed up the maintenance process and decrease unexpected downtime and cost. The research in recent years is drawn towards fault analysis under dynamic operating conditions, i.e. variable load and speed. Most of these techniques have focused on the use of voltage, current and torque, while magnetic flux density in the air-gap or the proximity of the motor has not yet been fully capitalised. This dissertation focuses on two main research topics in modelling and diagnosis of faulty PMSM in dynamic operations. The first problem is to decrease the computational burden of modelling and analysis techniques. The first contributions are new and faster methods for computing the permeance network model and quadratic time-frequency distributions. Reducing their computational burden makes them more attractive in analysis or fault diagnosis. The second contribution is to expand the model description of a simpler model. This can be achieved through a field reconstruction model with a magnet library and a description of both magnet defects and inter-turn short circuits. The second research topic is to simplify the installation and complexity of fault diagnosis schemes in PMSM. The aim is to reduce required sensors of fault diagnosis schemes, regardless of operation profiles. Conventional methods often rely on either steady-state or predefined operation profiles, e.g. start-up. A fault diagnosis scheme robust to any speed changes is desirable since a fault can be detected regardless of operations. The final contribution is the implementation of reinforcement learning in an active learning scheme to address the imbalance dataset problem. Samples from a faulty PMSM are often initially unavailable and expensive to acquire. Reinforcement learning with a weighted reward function might balance the dataset to enhance the trained fault classifier’s performance.publishedVersio

    Online parameter estimation for permanent magnet synchronous machines : an overview

    Get PDF
    Online parameter estimation of permanent magnet synchronous machines is critical for improving their control performance and operational reliability. This paper provides an overview of the recent achievements of online parameter estimation of PMSMs with examples. The critical issues in parameter estimation are firstly analysed, especially the rank-deficient issue and inverter nonlinearities. Then, the state-of-the-art online parameter estimation modelling techniques are reviewed and assessed. Finally, some typical applications and examples are outlined, e.g. estimation of mechanical parameters, improvement of sensored and sensorless control performance, thermal condition monitoring, and fault diagnosis, together with future research trends
    corecore