5,606 research outputs found

    STDP-driven networks and the \emph{C. elegans} neuronal network

    Full text link
    We study the dynamics of the structure of a formal neural network wherein the strengths of the synapses are governed by spike-timing-dependent plasticity (STDP). For properly chosen input signals, there exists a steady state with a residual network. We compare the motif profile of such a network with that of a real neural network of \emph{C. elegans} and identify robust qualitative similarities. In particular, our extensive numerical simulations show that this STDP-driven resulting network is robust under variations of the model parameters.Comment: 16 pages, 14 figure

    Supervised Learning in Multilayer Spiking Neural Networks

    Get PDF
    The current article introduces a supervised learning algorithm for multilayer spiking neural networks. The algorithm presented here overcomes some limitations of existing learning algorithms as it can be applied to neurons firing multiple spikes and it can in principle be applied to any linearisable neuron model. The algorithm is applied successfully to various benchmarks, such as the XOR problem and the Iris data set, as well as complex classifications problems. The simulations also show the flexibility of this supervised learning algorithm which permits different encodings of the spike timing patterns, including precise spike trains encoding.Comment: 38 pages, 4 figure

    An Online Unsupervised Structural Plasticity Algorithm for Spiking Neural Networks

    Full text link
    In this article, we propose a novel Winner-Take-All (WTA) architecture employing neurons with nonlinear dendrites and an online unsupervised structural plasticity rule for training it. Further, to aid hardware implementations, our network employs only binary synapses. The proposed learning rule is inspired by spike time dependent plasticity (STDP) but differs for each dendrite based on its activation level. It trains the WTA network through formation and elimination of connections between inputs and synapses. To demonstrate the performance of the proposed network and learning rule, we employ it to solve two, four and six class classification of random Poisson spike time inputs. The results indicate that by proper tuning of the inhibitory time constant of the WTA, a trade-off between specificity and sensitivity of the network can be achieved. We use the inhibitory time constant to set the number of subpatterns per pattern we want to detect. We show that while the percentage of successful trials are 92%, 88% and 82% for two, four and six class classification when no pattern subdivisions are made, it increases to 100% when each pattern is subdivided into 5 or 10 subpatterns. However, the former scenario of no pattern subdivision is more jitter resilient than the later ones.Comment: 11 pages, 10 figures, journa
    corecore