4,708 research outputs found

    Markov Decision Processes with Applications in Wireless Sensor Networks: A Survey

    Full text link
    Wireless sensor networks (WSNs) consist of autonomous and resource-limited devices. The devices cooperate to monitor one or more physical phenomena within an area of interest. WSNs operate as stochastic systems because of randomness in the monitored environments. For long service time and low maintenance cost, WSNs require adaptive and robust methods to address data exchange, topology formulation, resource and power optimization, sensing coverage and object detection, and security challenges. In these problems, sensor nodes are to make optimized decisions from a set of accessible strategies to achieve design goals. This survey reviews numerous applications of the Markov decision process (MDP) framework, a powerful decision-making tool to develop adaptive algorithms and protocols for WSNs. Furthermore, various solution methods are discussed and compared to serve as a guide for using MDPs in WSNs

    Fast-Convergent Learning-aided Control in Energy Harvesting Networks

    Full text link
    In this paper, we present a novel learning-aided energy management scheme (LEM\mathtt{LEM}) for multihop energy harvesting networks. Different from prior works on this problem, our algorithm explicitly incorporates information learning into system control via a step called \emph{perturbed dual learning}. LEM\mathtt{LEM} does not require any statistical information of the system dynamics for implementation, and efficiently resolves the challenging energy outage problem. We show that LEM\mathtt{LEM} achieves the near-optimal [O(ϵ),O(log(1/ϵ)2)][O(\epsilon), O(\log(1/\epsilon)^2)] utility-delay tradeoff with an O(1/ϵ1c/2)O(1/\epsilon^{1-c/2}) energy buffers (c(0,1)c\in(0,1)). More interestingly, LEM\mathtt{LEM} possesses a \emph{convergence time} of O(1/ϵ1c/2+1/ϵc)O(1/\epsilon^{1-c/2} +1/\epsilon^c), which is much faster than the Θ(1/ϵ)\Theta(1/\epsilon) time of pure queue-based techniques or the Θ(1/ϵ2)\Theta(1/\epsilon^2) time of approaches that rely purely on learning the system statistics. This fast convergence property makes LEM\mathtt{LEM} more adaptive and efficient in resource allocation in dynamic environments. The design and analysis of LEM\mathtt{LEM} demonstrate how system control algorithms can be augmented by learning and what the benefits are. The methodology and algorithm can also be applied to similar problems, e.g., processing networks, where nodes require nonzero amount of contents to support their actions

    Energy Sharing for Multiple Sensor Nodes with Finite Buffers

    Full text link
    We consider the problem of finding optimal energy sharing policies that maximize the network performance of a system comprising of multiple sensor nodes and a single energy harvesting (EH) source. Sensor nodes periodically sense the random field and generate data, which is stored in the corresponding data queues. The EH source harnesses energy from ambient energy sources and the generated energy is stored in an energy buffer. Sensor nodes receive energy for data transmission from the EH source. The EH source has to efficiently share the stored energy among the nodes in order to minimize the long-run average delay in data transmission. We formulate the problem of energy sharing between the nodes in the framework of average cost infinite-horizon Markov decision processes (MDPs). We develop efficient energy sharing algorithms, namely Q-learning algorithm with exploration mechanisms based on the ϵ\epsilon-greedy method as well as upper confidence bound (UCB). We extend these algorithms by incorporating state and action space aggregation to tackle state-action space explosion in the MDP. We also develop a cross entropy based method that incorporates policy parameterization in order to find near optimal energy sharing policies. Through simulations, we show that our algorithms yield energy sharing policies that outperform the heuristic greedy method.Comment: 38 pages, 10 figure

    Machine Learning in Wireless Sensor Networks: Algorithms, Strategies, and Applications

    Get PDF
    Wireless sensor networks monitor dynamic environments that change rapidly over time. This dynamic behavior is either caused by external factors or initiated by the system designers themselves. To adapt to such conditions, sensor networks often adopt machine learning techniques to eliminate the need for unnecessary redesign. Machine learning also inspires many practical solutions that maximize resource utilization and prolong the lifespan of the network. In this paper, we present an extensive literature review over the period 2002-2013 of machine learning methods that were used to address common issues in wireless sensor networks (WSNs). The advantages and disadvantages of each proposed algorithm are evaluated against the corresponding problem. We also provide a comparative guide to aid WSN designers in developing suitable machine learning solutions for their specific application challenges.Comment: Accepted for publication in IEEE Communications Surveys and Tutorial

    Decentralized Delay Optimal Control for Interference Networks with Limited Renewable Energy Storage

    Full text link
    In this paper, we consider delay minimization for interference networks with renewable energy source, where the transmission power of a node comes from both the conventional utility power (AC power) and the renewable energy source. We assume the transmission power of each node is a function of the local channel state, local data queue state and local energy queue state only. In turn, we consider two delay optimization formulations, namely the decentralized partially observable Markov decision process (DEC-POMDP) and Non-cooperative partially observable stochastic game (POSG). In DEC-POMDP formulation, we derive a decentralized online learning algorithm to determine the control actions and Lagrangian multipliers (LMs) simultaneously, based on the policy gradient approach. Under some mild technical conditions, the proposed decentralized policy gradient algorithm converges almost surely to a local optimal solution. On the other hand, in the non-cooperative POSG formulation, the transmitter nodes are non-cooperative. We extend the decentralized policy gradient solution and establish the technical proof for almost-sure convergence of the learning algorithms. In both cases, the solutions are very robust to model variations. Finally, the delay performance of the proposed solutions are compared with conventional baseline schemes for interference networks and it is illustrated that substantial delay performance gain and energy savings can be achieved

    EC-CENTRIC: An Energy- and Context-Centric Perspective on IoT Systems and Protocol Design

    Get PDF
    The radio transceiver of an IoT device is often where most of the energy is consumed. For this reason, most research so far has focused on low power circuit and energy efficient physical layer designs, with the goal of reducing the average energy per information bit required for communication. While these efforts are valuable per se, their actual effectiveness can be partially neutralized by ill-designed network, processing and resource management solutions, which can become a primary factor of performance degradation, in terms of throughput, responsiveness and energy efficiency. The objective of this paper is to describe an energy-centric and context-aware optimization framework that accounts for the energy impact of the fundamental functionalities of an IoT system and that proceeds along three main technical thrusts: 1) balancing signal-dependent processing techniques (compression and feature extraction) and communication tasks; 2) jointly designing channel access and routing protocols to maximize the network lifetime; 3) providing self-adaptability to different operating conditions through the adoption of suitable learning architectures and of flexible/reconfigurable algorithms and protocols. After discussing this framework, we present some preliminary results that validate the effectiveness of our proposed line of action, and show how the use of adaptive signal processing and channel access techniques allows an IoT network to dynamically tune lifetime for signal distortion, according to the requirements dictated by the application

    Energy Harvesting Broadband Communication Systems with Processing Energy Cost

    Full text link
    Communication over a broadband fading channel powered by an energy harvesting transmitter is studied. Assuming non-causal knowledge of energy/data arrivals and channel gains, optimal transmission schemes are identified by taking into account the energy cost of the processing circuitry as well as the transmission energy. A constant processing cost for each active sub-channel is assumed. Three different system objectives are considered: i) throughput maximization, in which the total amount of transmitted data by a deadline is maximized for a backlogged transmitter with a finite capacity battery; ii) energy maximization, in which the remaining energy in an infinite capacity battery by a deadline is maximized such that all the arriving data packets are delivered; iii) transmission completion time minimization, in which the delivery time of all the arriving data packets is minimized assuming infinite size battery. For each objective, a convex optimization problem is formulated, the properties of the optimal transmission policies are identified, and an algorithm which computes an optimal transmission policy is proposed. Finally, based on the insights gained from the offline optimizations, low-complexity online algorithms performing close to the optimal dynamic programming solution for the throughput and energy maximization problems are developed under the assumption that the energy/data arrivals and channel states are known causally at the transmitter.Comment: published in IEEE Transactions on Wireless Communication

    Learning Aided Optimization for Energy Harvesting Devices with Outdated State Information

    Full text link
    This paper considers utility optimal power control for energy harvesting wireless devices with a finite capacity battery. The distribution information of the underlying wireless environment and harvestable energy is unknown and only outdated system state information is known at the device controller. This scenario shares similarity with Lyapunov opportunistic optimization and online learning but is different from both. By a novel combination of Zinkevich's online gradient learning technique and the drift-plus-penalty technique from Lyapunov opportunistic optimization, this paper proposes a learning-aided algorithm that achieves utility within O(ϵ)O(\epsilon) of the optimal, for any desired ϵ>0\epsilon>0, by using a battery with an O(1/ϵ)O(1/\epsilon) capacity. The proposed algorithm has low complexity and makes power investment decisions based on system history, without requiring knowledge of the system state or its probability distribution.Comment: This version extends v1 (our INFOCOM 2018 paper): (1) add a new section (Section V) to study the case where utility functions are non-i.i.d. arbitrarily varying (2) add more simulation experiments. The current version is published in IEEE/ACM Transactions on Networkin
    corecore