4 research outputs found

    Fast foot prints re-planning and motion generation during walking in physical human-humanoid interaction

    Get PDF
    Abstract-In this paper a system allowing real-time interaction between a human and a humanoid robot while walking is presented. The aim of this work is to integrate humanoid robots into collaborative working environment. Co-located realization of a task is one instance of such collaboration. To achieve such task whole-body motion generation while keeping balance is mandatory. This is obtained using a real-time pattern generator allowing on-line foot-print modification integrated in a stack of controllers. Several experiments of direct interaction between a human and a HRP-2 humanoid robot illustrates the results

    Omnidirectional Walking Pattern Generator Combining Virtual Constraints and Preview Control for Humanoid Robots

    Get PDF
    This paper presents a novel omnidirectional walking pattern generator for bipedal locomotion combining two structurally different approaches based on the virtual constraints and the preview control theories to generate a flexible gait that can be modified on-line. The proposed strategy synchronizes the displacement of the robot along the two planes of walking: the zero moment point based preview control is responsible for the lateral component of the gait, while the sagittal motion is generated by a more dynamical approach based on virtual constraints. The resulting algorithm is characterized by a low computational complexity and high flexibility, requisite for a successful deployment to humanoid robots operating in real world scenarios. This solution is motivated by observations in biomechanics showing how during a nominal gait the dynamic motion of the human walk is mainly generated along the sagittal plane. We describe the implementation of the algorithm and we detail the strategy chosen to enable omnidirectionality and on-line gait tuning. Finally, we validate our strategy through simulation experiments using the COMAN + platform, an adult size humanoid robot developed at Istituto Italiano di Tecnologia. Finally, the hybrid walking pattern generator is implemented on real hardware, demonstrating promising results: the WPG trajectories results in open-loop stable walking in the absence of external disturbances

    Dynamic Walking: Toward Agile and Efficient Bipedal Robots

    Get PDF
    Dynamic walking on bipedal robots has evolved from an idea in science fiction to a practical reality. This is due to continued progress in three key areas: a mathematical understanding of locomotion, the computational ability to encode this mathematics through optimization, and the hardware capable of realizing this understanding in practice. In this context, this review article outlines the end-to-end process of methods which have proven effective in the literature for achieving dynamic walking on bipedal robots. We begin by introducing mathematical models of locomotion, from reduced order models that capture essential walking behaviors to hybrid dynamical systems that encode the full order continuous dynamics along with discrete footstrike dynamics. These models form the basis for gait generation via (nonlinear) optimization problems. Finally, models and their generated gaits merge in the context of real-time control, wherein walking behaviors are translated to hardware. The concepts presented are illustrated throughout in simulation, and experimental instantiation on multiple walking platforms are highlighted to demonstrate the ability to realize dynamic walking on bipedal robots that is agile and efficient

    Motion planning for manipulation and/or navigation tasks with emphasis on humanoid robots

    Get PDF
    This thesis handles the motion planning problem for various robotic platforms. This is a fundamental problem, especially referring to humanoid robots for which it is particularly challenging for a number of reasons. The first is the high number of degrees of freedom. The second is that a humanoid robot is not a free-flying system in its configuration space: its motions must be generated appropriately. Finally, the implicit requirement that the robot maintains equilibrium, either static or dynamic, typically constrains the trajectory of the robot center of mass. In particular, we are interested in handling problems in which the robot must execute a task, possibly requiring stepping, in environments cluttered by obstacles. In order to solve this problem, we propose to use offline probabilistic motion planning techniques such as Rapidly Exploring Random Trees (RRTs) that consist in finding a solution by means of a graph built in an appropriately defined configuration space. The novelty of the approach is that it does not separate locomotion from task execution. This feature allows to generate whole-body movements while fulfilling the task. The task can be assigned as a trajectory or a single point in the task space or even combining tasks of different nature (e.g., manipulation and navigation tasks). The proposed method is also able to deform the task, if the assigned one is too difficult to be fulfilled. It automatically detects when the task should be deformed and which kind of deformation to apply. However, there are situations, especially when robots and humans have to share the same workspace, in which the robot has to be equipped with reactive capabilities (as avoiding moving obstacles), allowing to reach a basic level of safety. The final part of the thesis handles the rearrangement planning problem. This problem is interesting in view of manipulation tasks, where the robot has to interact with objects in the environment. Roughly speaking, the goal of this problem is to plan the motion for a robot whose assigned a task (e.g., move a target object in a goal region). Doing this, the robot is allowed to move some movable objects that are in the environment. The problem is difficult because we must plan in continuous, high-dimensional state and action spaces. Additionally, the physical constraints induced by the nonprehensile interaction between the robot and the objects in the scene must be respected. Our insight is to embed physics models in the planning stage, allowing robot manipulation and simultaneous objects interaction. Throughout the thesis, we evaluate the proposed planners through experiments on different robotic platforms
    corecore