3 research outputs found

    Online Sparse Sliced Inverse Regression

    Full text link
    Due to the demand for tackling the problem of streaming data with high dimensional covariates, we propose an online sparse sliced inverse regression (OSSIR) method for online sufficient dimension reduction. The existing online sufficient dimension reduction methods focus on the case when the dimension pp is small. In this article, we show that our method can achieve better statistical accuracy and computation speed when the dimension pp is large. There are two important steps in our method, one is to extend the online principal component analysis to iteratively obtain the eigenvalues and eigenvectors of the kernel matrix, the other is to use the truncated gradient to achieve online L1L_{1} regularization. We also analyze the convergence of the extended Candid covariance-free incremental PCA(CCIPCA) and our method. By comparing several existing methods in the simulations and real data applications, we demonstrate the effectiveness and efficiency of our method

    Online Updating Statistics for Heterogenous Updating Regressions via Homogenization Techniques

    Full text link
    Under the environment of big data streams, it is a common situation where the variable set of a model may change according to the condition of data streams. In this paper, we propose a homogenization strategy to represent the heterogenous models that are gradually updated in the process of data streams. With the homogenized representations, we can easily construct various online updating statistics such as parameter estimation, residual sum of squares and FF-statistic for the heterogenous updating regression models. The main difference from the classical scenarios is that the artificial covariates in the homogenized models are not identically distributed as the natural covariates in the original models, consequently, the related theoretical properties are distinct from the classical ones. The asymptotical properties of the online updating statistics are established, which show that the new method can achieve estimation efficiency and oracle property, without any constraint on the number of data batches. The behavior of the method is further illustrated by various numerical examples from simulation experiments

    Sufficient dimension reduction for classification using principal optimal transport direction

    Full text link
    Sufficient dimension reduction is used pervasively as a supervised dimension reduction approach. Most existing sufficient dimension reduction methods are developed for data with a continuous response and may have an unsatisfactory performance for the categorical response, especially for the binary-response. To address this issue, we propose a novel estimation method of sufficient dimension reduction subspace (SDR subspace) using optimal transport. The proposed method, named principal optimal transport direction (POTD), estimates the basis of the SDR subspace using the principal directions of the optimal transport coupling between the data respecting different response categories. The proposed method also reveals the relationship among three seemingly irrelevant topics, i.e., sufficient dimension reduction, support vector machine, and optimal transport. We study the asymptotic properties of POTD and show that in the cases when the class labels contain no error, POTD estimates the SDR subspace exclusively. Empirical studies show POTD outperforms most of the state-of-the-art linear dimension reduction methods.Comment: 18 pages, 4 figures, to be published in 34th Conference on Neural Information Processing Systems (NeurIPS 2020), add the supplementary materia
    corecore