2 research outputs found

    BlessMark: A Blind Diagnostically-Lossless Watermarking Framework for Medical Applications Based on Deep Neural Networks

    Full text link
    Nowadays, with the development of public network usage, medical information is transmitted throughout the hospitals. The watermarking system can help for the confidentiality of medical information distributed over the internet. In medical images, regions-of-interest (ROI) contain diagnostic information. The watermark should be embedded only into non-regions-of-interest (NROI) to keep diagnostic information without distortion. Recently, ROI based watermarking has attracted the attention of the medical research community. The ROI map can be used as an embedding key for improving confidentiality protection purposes. However, in most existing works, the ROI map that is used for the embedding process must be sent as side-information along with the watermarked image. This side information is a disadvantage and makes the extraction process non-blind. Also, most existing algorithms do not recover NROI of the original cover image after the extraction of the watermark. In this paper, we propose a framework for blind diagnostically-lossless watermarking, which iteratively embeds only into NROI. The significance of the proposed framework is in satisfying the confidentiality of the patient information through a blind watermarking system, while it preserves diagnostic/medical information of the image throughout the watermarking process. A deep neural network is used to recognize the ROI map in the embedding, extraction, and recovery processes. In the extraction process, the same ROI map of the embedding process is recognized without requiring any additional information. Hence, the watermark is blindly extracted from the NROI.Comment: Drs. Soroushmehr and Najarian declared that they had not contributions to the paper. I removed their name

    TRLF: An Effective Semi-fragile Watermarking Method for Tamper Detection and Recovery based on LWT and FNN

    Full text link
    This paper proposes a novel method for tamper detection and recovery using semi-fragile data hiding, based on Lifting Wavelet Transform (LWT) and Feed-Forward Neural Network (FNN). In TRLF, first, the host image is decomposed up to one level using LWT, and the Discrete Cosine Transform (DCT) is applied to each 2*2 blocks of diagonal details. Next, a random binary sequence is embedded in each block as the watermark by correlating DCDC coefficients. In authentication stage, first, the watermarked image geometry is reconstructed by using Speeded Up Robust Features (SURF) algorithm and extract watermark bits by using FNN. Afterward, logical exclusive-or operation between original and extracted watermark is applied to detect tampered region. Eventually, in the recovery stage, tampered regions are recovered by image digest which is generated by inverse halftoning technique. The performance and efficiency of TRLF and its robustness against various geometric, non-geometric and hybrid attacks are reported. From the experimental results, it can be seen that TRLF is superior in terms of robustness and quality of the digest and watermarked image respectively, compared to the-state-of-the-art fragile and semi-fragile watermarking methods. In addition, imperceptibility has been improved by using different correlation steps as the gain factor for flat (smooth) and texture (rough) blocks
    corecore