157,101 research outputs found

    Learning to Rank: Online Learning, Statistical Theory and Applications.

    Full text link
    Learning to rank is a supervised machine learning problem, where the output space is the special structured space of emph{permutations}. Learning to rank has diverse application areas, spanning information retrieval, recommendation systems, computational biology and others. In this dissertation, we make contributions to some of the exciting directions of research in learning to rank. In the first part, we extend the classic, online perceptron algorithm for classification to learning to rank, giving a loss bound which is reminiscent of Novikoff's famous convergence theorem for classification. In the second part, we give strategies for learning ranking functions in an online setting, with a novel, feedback model, where feedback is restricted to labels of top ranked items. The second part of our work is divided into two sub-parts; one without side information and one with side information. In the third part, we provide novel generalization error bounds for algorithms applied to various Lipschitz and/or smooth ranking surrogates. In the last part, we apply ranking losses to learn policies for personalized advertisement recommendations, partially overcoming the problem of click sparsity. We conduct experiments on various simulated and commercial datasets, comparing our strategies with baseline strategies for online learning to rank and personalized advertisement recommendation.PhDStatisticsUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/133334/1/sougata_1.pd

    Policy-Aware Unbiased Learning to Rank for Top-k Rankings

    Get PDF
    Counterfactual Learning to Rank (LTR) methods optimize ranking systems using logged user interactions that contain interaction biases. Existing methods are only unbiased if users are presented with all relevant items in every ranking. There is currently no existing counterfactual unbiased LTR method for top-k rankings. We introduce a novel policy-aware counterfactual estimator for LTR metrics that can account for the effect of a stochastic logging policy. We prove that the policy-aware estimator is unbiased if every relevant item has a non-zero probability to appear in the top-k ranking. Our experimental results show that the performance of our estimator is not affected by the size of k: for any k, the policy-aware estimator reaches the same retrieval performance while learning from top-k feedback as when learning from feedback on the full ranking. Lastly, we introduce novel extensions of traditional LTR methods to perform counterfactual LTR and to optimize top-k metrics. Together, our contributions introduce the first policy-aware unbiased LTR approach that learns from top-k feedback and optimizes top-k metrics. As a result, counterfactual LTR is now applicable to the very prevalent top-k ranking setting in search and recommendation.Comment: SIGIR 2020 full conference pape

    The use of implicit evidence for relevance feedback in web retrieval

    Get PDF
    In this paper we report on the application of two contrasting types of relevance feedback for web retrieval. We compare two systems; one using explicit relevance feedback (where searchers explicitly have to mark documents relevant) and one using implicit relevance feedback (where the system endeavours to estimate relevance by mining the searcher's interaction). The feedback is used to update the display according to the user's interaction. Our research focuses on the degree to which implicit evidence of document relevance can be substituted for explicit evidence. We examine the two variations in terms of both user opinion and search effectiveness

    Discussion quality diffuses in the digital public square

    Full text link
    Studies of online social influence have demonstrated that friends have important effects on many types of behavior in a wide variety of settings. However, we know much less about how influence works among relative strangers in digital public squares, despite important conversations happening in such spaces. We present the results of a study on large public Facebook pages where we randomly used two different methods--most recent and social feedback--to order comments on posts. We find that the social feedback condition results in higher quality viewed comments and response comments. After measuring the average quality of comments written by users before the study, we find that social feedback has a positive effect on response quality for both low and high quality commenters. We draw on a theoretical framework of social norms to explain this empirical result. In order to examine the influence mechanism further, we measure the similarity between comments viewed and written during the study, finding that similarity increases for the highest quality contributors under the social feedback condition. This suggests that, in addition to norms, some individuals may respond with increased relevance to high-quality comments.Comment: 10 pages, 6 figures, 2 table
    • …
    corecore