10,400 research outputs found

    Online Multi-Coloring with Advice

    Full text link
    We consider the problem of online graph multi-coloring with advice. Multi-coloring is often used to model frequency allocation in cellular networks. We give several nearly tight upper and lower bounds for the most standard topologies of cellular networks, paths and hexagonal graphs. For the path, negative results trivially carry over to bipartite graphs, and our positive results are also valid for bipartite graphs. The advice given represents information that is likely to be available, studying for instance the data from earlier similar periods of time.Comment: IMADA-preprint-c

    The Advice Complexity of a Class of Hard Online Problems

    Get PDF
    The advice complexity of an online problem is a measure of how much knowledge of the future an online algorithm needs in order to achieve a certain competitive ratio. Using advice complexity, we define the first online complexity class, AOC. The class includes independent set, vertex cover, dominating set, and several others as complete problems. AOC-complete problems are hard, since a single wrong answer by the online algorithm can have devastating consequences. For each of these problems, we show that log(1+(c1)c1/cc)n=Θ(n/c)\log\left(1+(c-1)^{c-1}/c^{c}\right)n=\Theta (n/c) bits of advice are necessary and sufficient (up to an additive term of O(logn)O(\log n)) to achieve a competitive ratio of cc. The results are obtained by introducing a new string guessing problem related to those of Emek et al. (TCS 2011) and B\"ockenhauer et al. (TCS 2014). It turns out that this gives a powerful but easy-to-use method for providing both upper and lower bounds on the advice complexity of an entire class of online problems, the AOC-complete problems. Previous results of Halld\'orsson et al. (TCS 2002) on online independent set, in a related model, imply that the advice complexity of the problem is Θ(n/c)\Theta (n/c). Our results improve on this by providing an exact formula for the higher-order term. For online disjoint path allocation, B\"ockenhauer et al. (ISAAC 2009) gave a lower bound of Ω(n/c)\Omega (n/c) and an upper bound of O((nlogc)/c)O((n\log c)/c) on the advice complexity. We improve on the upper bound by a factor of logc\log c. For the remaining problems, no bounds on their advice complexity were previously known.Comment: Full paper to appear in Theory of Computing Systems. A preliminary version appeared in STACS 201

    Online Bin Packing with Advice

    Get PDF
    We consider the online bin packing problem under the advice complexity model where the 'online constraint' is relaxed and an algorithm receives partial information about the future requests. We provide tight upper and lower bounds for the amount of advice an algorithm needs to achieve an optimal packing. We also introduce an algorithm that, when provided with log n + o(log n) bits of advice, achieves a competitive ratio of 3/2 for the general problem. This algorithm is simple and is expected to find real-world applications. We introduce another algorithm that receives 2n + o(n) bits of advice and achieves a competitive ratio of 4/3 + {\epsilon}. Finally, we provide a lower bound argument that implies that advice of linear size is required for an algorithm to achieve a competitive ratio better than 9/8.Comment: 19 pages, 1 figure (2 subfigures

    On Conceptually Simple Algorithms for Variants of Online Bipartite Matching

    Full text link
    We present a series of results regarding conceptually simple algorithms for bipartite matching in various online and related models. We first consider a deterministic adversarial model. The best approximation ratio possible for a one-pass deterministic online algorithm is 1/21/2, which is achieved by any greedy algorithm. D\"urr et al. recently presented a 22-pass algorithm called Category-Advice that achieves approximation ratio 3/53/5. We extend their algorithm to multiple passes. We prove the exact approximation ratio for the kk-pass Category-Advice algorithm for all k1k \ge 1, and show that the approximation ratio converges to the inverse of the golden ratio 2/(1+5)0.6182/(1+\sqrt{5}) \approx 0.618 as kk goes to infinity. The convergence is extremely fast --- the 55-pass Category-Advice algorithm is already within 0.01%0.01\% of the inverse of the golden ratio. We then consider a natural greedy algorithm in the online stochastic IID model---MinDegree. This algorithm is an online version of a well-known and extensively studied offline algorithm MinGreedy. We show that MinDegree cannot achieve an approximation ratio better than 11/e1-1/e, which is guaranteed by any consistent greedy algorithm in the known IID model. Finally, following the work in Besser and Poloczek, we depart from an adversarial or stochastic ordering and investigate a natural randomized algorithm (MinRanking) in the priority model. Although the priority model allows the algorithm to choose the input ordering in a general but well defined way, this natural algorithm cannot obtain the approximation of the Ranking algorithm in the ROM model
    corecore