2 research outputs found

    Mixed GMsFEM for linear poroelasticity problems in heterogeneous porous media

    Full text link
    Accurate numerical simulations of interaction between fluid and solid play an important role in applications. The task is challenging in practical scenarios as the media are usually highly heterogeneous with very large contrast. To overcome this computational challenge, various multiscale methods are developed. In this paper, we consider a class of linear poroelasticity problems in high contrast heterogeneous porous media, and develop a mixed generalized multiscale finite element method (GMsFEM) to obtain a fast computational method. Our aim is to develop a multiscale method that is robust with respect to the heterogeneities and contrast of the media, and gives a mass conservative fluid velocity field. We will construct decoupled multiscale basis functions for the elastic displacement as well as fluid velocity. Our multiscale basis functions are local. The construction is based on some suitable choices of local snapshot spaces and local spectral decomposition, with the goal of extracting dominant modes of the solutions. For the pressure, we will use piecewise constant approximation. We will present several numerical examples to illustrate the performance of our method. Our results indicate that the proposed method is able to give accurate numerical solutions with a small degree of freedoms

    A comparison of mixed multiscale finite element methods for multiphase transport in highly heterogeneous media

    Full text link
    In this paper, we systemically review and compare two mixed multiscale finite element methods (MMsFEM) for multiphase transport in highly heterogeneous media. In particular, we will consider the mixed multiscale finite element method using limited global information, simply denoted by MMsFEM, and the mixed generalized multiscale finite element method (MGMsFEM) with residual driven online multiscale basis functions. Both methods are under the framework of mixed multiscale finite element methods, where the pressure equation is solved in the coarse grid with carefully constructed multiscale basis functions for the velocity. The multiscale basis functions in both methods include local and global media information. In terms of MsFEM using limited global information, only one multiscale basis function is utilized in each local neighborhood while multiple basis are used in MGMsFEM. We will test and compare these two methods using the benchmark three-dimensional SPE10 model. A range of coarse grid sizes and different combinations of basis functions (offline and online) will be considered with CPU time reported for each case. In our numerical experiments, we observe good accuracy by the two above methods. Finally, we will discuss and compare the advantages and disadvantages of the two methods in terms of accuracy and computational costs.Comment: 25 page
    corecore