3,934 research outputs found

    Nonparametric Infinite Horizon Kullback-Leibler Stochastic Control

    Full text link
    We present two nonparametric approaches to Kullback-Leibler (KL) control, or linearly-solvable Markov decision problem (LMDP) based on Gaussian processes (GP) and Nystr\"{o}m approximation. Compared to recently developed parametric methods, the proposed data-driven frameworks feature accurate function approximation and efficient on-line operations. Theoretically, we derive the mathematical connection of KL control based on dynamic programming with earlier work in control theory which relies on information theoretic dualities for the infinite time horizon case. Algorithmically, we give explicit optimal control policies in nonparametric forms, and propose on-line update schemes with budgeted computational costs. Numerical results demonstrate the effectiveness and usefulness of the proposed frameworks

    Passive Dynamics in Mean Field Control

    Full text link
    Mean-field models are a popular tool in a variety of fields. They provide an understanding of the impact of interactions among a large number of particles or people or other "self-interested agents", and are an increasingly popular tool in distributed control. This paper considers a particular randomized distributed control architecture introduced in our own recent work. In numerical results it was found that the associated mean-field model had attractive properties for purposes of control. In particular, when viewed as an input-output system, its linearization was found to be minimum phase. In this paper we take a closer look at the control model. The results are summarized as follows: (i) The Markov Decision Process framework of Todorov is extended to continuous time models, in which the "control cost" is based on relative entropy. This is the basis of the construction of a family of controlled Markovian generators. (ii) A decentralized control architecture is proposed in which each agent evolves as a controlled Markov process. A central authority broadcasts a common control signal to each agent. The central authority chooses this signal based on an aggregate scalar output of the Markovian agents. (iii) Provided the control-free system is a reversible Markov process, the following identity holds for the linearization, Real(G(jω))=PSDY(ω)≥0,ω∈ℜ, \text{Real} (G(j\omega)) = \text{PSD}_Y(\omega)\ge 0, \quad \omega\in\Re, where the right hand side denotes the power spectral density for the output of any one of the individual (control-free) Markov processes.Comment: To appear IEEE CDC, 201

    Action-Constrained Markov Decision Processes With Kullback-Leibler Cost

    Full text link
    This paper concerns computation of optimal policies in which the one-step reward function contains a cost term that models Kullback-Leibler divergence with respect to nominal dynamics. This technique was introduced by Todorov in 2007, where it was shown under general conditions that the solution to the average-reward optimality equations reduce to a simple eigenvector problem. Since then many authors have sought to apply this technique to control problems and models of bounded rationality in economics. A crucial assumption is that the input process is essentially unconstrained. For example, if the nominal dynamics include randomness from nature (e.g., the impact of wind on a moving vehicle), then the optimal control solution does not respect the exogenous nature of this disturbance. This paper introduces a technique to solve a more general class of action-constrained MDPs. The main idea is to solve an entire parameterized family of MDPs, in which the parameter is a scalar weighting the one-step reward function. The approach is new and practical even in the original unconstrained formulation

    Optimal Ensemble Control of Loads in Distribution Grids with Network Constraints

    Full text link
    Flexible loads, e.g. thermostatically controlled loads (TCLs), are technically feasible to participate in demand response (DR) programs. On the other hand, there is a number of challenges that need to be resolved before it can be implemented in practice en masse. First, individual TCLs must be aggregated and operated in sync to scale DR benefits. Second, the uncertainty of TCLs needs to be accounted for. Third, exercising the flexibility of TCLs needs to be coordinated with distribution system operations to avoid unnecessary power losses and compliance with power flow and voltage limits. This paper addresses these challenges. We propose a network-constrained, open-loop, stochastic optimal control formulation. The first part of this formulation represents ensembles of collocated TCLs modelled by an aggregated Markov Process (MP), where each MP state is associated with a given power consumption or production level. The second part extends MPs to a multi-period distribution power flow optimization. In this optimization, the control of TCL ensembles is regulated by transition probability matrices and physically enabled by local active and reactive power controls at TCL locations. The optimization is solved with a Spatio-Temporal Dual Decomposition (ST-D2) algorithm. The performance of the proposed formulation and algorithm is demonstrated on the IEEE 33-bus distribution model.Comment: 7 pages, 6 figures, accepted PSCC 201
    • …
    corecore