50,019 research outputs found

    Pairwise Learning via Stagewise Training in Proximal Setting

    Full text link
    The pairwise objective paradigms are an important and essential aspect of machine learning. Examples of machine learning approaches that use pairwise objective functions include differential network in face recognition, metric learning, bipartite learning, multiple kernel learning, and maximizing of area under the curve (AUC). Compared to pointwise learning, pairwise learning's sample size grows quadratically with the number of samples and thus its complexity. Researchers mostly address this challenge by utilizing an online learning system. Recent research has, however, offered adaptive sample size training for smooth loss functions as a better strategy in terms of convergence and complexity, but without a comprehensive theoretical study. In a distinct line of research, importance sampling has sparked a considerable amount of interest in finite pointwise-sum minimization. This is because of the stochastic gradient variance, which causes the convergence to be slowed considerably. In this paper, we combine adaptive sample size and importance sampling techniques for pairwise learning, with convergence guarantees for nonsmooth convex pairwise loss functions. In particular, the model is trained stochastically using an expanded training set for a predefined number of iterations derived from the stability bounds. In addition, we demonstrate that sampling opposite instances at each iteration reduces the variance of the gradient, hence accelerating convergence. Experiments on a broad variety of datasets in AUC maximization confirm the theoretical results.Comment: 10 Page

    Variance Reduced Online Gradient Descent for Kernelized Pairwise Learning with Limited Memory

    Full text link
    Pairwise learning is essential in machine learning, especially for problems involving loss functions defined on pairs of training examples. Online gradient descent (OGD) algorithms have been proposed to handle online pairwise learning, where data arrives sequentially. However, the pairwise nature of the problem makes scalability challenging, as the gradient computation for a new sample involves all past samples. Recent advancements in OGD algorithms have aimed to reduce the complexity of calculating online gradients, achieving complexities less than O(T)O(T) and even as low as O(1)O(1). However, these approaches are primarily limited to linear models and have induced variance. In this study, we propose a limited memory OGD algorithm that extends to kernel online pairwise learning while improving the sublinear regret. Specifically, we establish a clear connection between the variance of online gradients and the regret, and construct online gradients using the most recent stratified samples with a limited buffer of size of ss representing all past data, which have a complexity of O(sT)O(sT) and employs O(TlogT)O(\sqrt{T}\log{T}) random Fourier features for kernel approximation. Importantly, our theoretical results demonstrate that the variance-reduced online gradients lead to an improved sublinear regret bound. The experiments on real-world datasets demonstrate the superiority of our algorithm over both kernelized and linear online pairwise learning algorithms.Comment: Accepted in ACML202

    SCALE: Online Self-Supervised Lifelong Learning without Prior Knowledge

    Full text link
    Unsupervised lifelong learning refers to the ability to learn over time while memorizing previous patterns without supervision. Previous works assumed strong prior knowledge about the incoming data (e.g., knowing the class boundaries) which can be impossible to obtain in complex and unpredictable environments. In this paper, motivated by real-world scenarios, we formally define the online unsupervised lifelong learning problem with class-incremental streaming data, which is non-iid and single-pass. The problem is more challenging than existing lifelong learning problems due to the absence of labels and prior knowledge. To address the issue, we propose Self-Supervised ContrAstive Lifelong LEarning (SCALE) which extracts and memorizes knowledge on-the-fly. SCALE is designed around three major components: a pseudo-supervised contrastive loss, a self-supervised forgetting loss, and an online memory update for uniform subset selection. All three components are designed to work collaboratively to maximize learning performance. Our loss functions leverage pairwise similarity thus remove the dependency on supervision or prior knowledge. We perform comprehensive experiments of SCALE under iid and four non-iid data streams. SCALE outperforms the best state-of-the-art algorithm on all settings with improvements of up to 3.83%, 2.77% and 5.86% kNN accuracy on CIFAR-10, CIFAR-100 and SubImageNet datasets.Comment: Submitted for revie

    Ranked List Loss for Deep Metric Learning

    Full text link
    The objective of deep metric learning (DML) is to learn embeddings that can capture semantic similarity and dissimilarity information among data points. Existing pairwise or tripletwise loss functions used in DML are known to suffer from slow convergence due to a large proportion of trivial pairs or triplets as the model improves. To improve this, ranking-motivated structured losses are proposed recently to incorporate multiple examples and exploit the structured information among them. They converge faster and achieve state-of-the-art performance. In this work, we unveil two limitations of existing ranking-motivated structured losses and propose a novel ranked list loss to solve both of them. First, given a query, only a fraction of data points is incorporated to build the similarity structure. Consequently, some useful examples are ignored and the structure is less informative. To address this, we propose to build a set-based similarity structure by exploiting all instances in the gallery. The learning setting can be interpreted as few-shot retrieval: given a mini-batch, every example is iteratively used as a query, and the rest ones compose the gallery to search, i.e., the support set in few-shot setting. The rest examples are split into a positive set and a negative set. For every mini-batch, the learning objective of ranked list loss is to make the query closer to the positive set than to the negative set by a margin. Second, previous methods aim to pull positive pairs as close as possible in the embedding space. As a result, the intraclass data distribution tends to be extremely compressed. In contrast, we propose to learn a hypersphere for each class in order to preserve useful similarity structure inside it, which functions as regularisation. Extensive experiments demonstrate the superiority of our proposal by comparing with the state-of-the-art methods.Comment: Accepted to T-PAMI. Therefore, to read the offical version, please go to IEEE Xplore. Fine-grained image retrieval task. Our source code is available online: https://github.com/XinshaoAmosWang/Ranked-List-Loss-for-DM
    corecore