55,232 research outputs found

    Efficient Online Decision Tree Learning with Active Feature Acquisition

    Full text link
    Constructing decision trees online is a classical machine learning problem. Existing works often assume that features are readily available for each incoming data point. However, in many real world applications, both feature values and the labels are unknown a priori and can only be obtained at a cost. For example, in medical diagnosis, doctors have to choose which tests to perform (i.e., making costly feature queries) on a patient in order to make a diagnosis decision (i.e., predicting labels). We provide a fresh perspective to tackle this practical challenge. Our framework consists of an active planning oracle embedded in an online learning scheme for which we investigate several information acquisition functions. Specifically, we employ a surrogate information acquisition function based on adaptive submodularity to actively query feature values with a minimal cost, while using a posterior sampling scheme to maintain a low regret for online prediction. We demonstrate the efficiency and effectiveness of our framework via extensive experiments on various real-world datasets. Our framework also naturally adapts to the challenging setting of online learning with concept drift and is shown to be competitive with baseline models while being more flexible

    Adaptive Endpointing with Deep Contextual Multi-armed Bandits

    Full text link
    Current endpointing (EP) solutions learn in a supervised framework, which does not allow the model to incorporate feedback and improve in an online setting. Also, it is a common practice to utilize costly grid-search to find the best configuration for an endpointing model. In this paper, we aim to provide a solution for adaptive endpointing by proposing an efficient method for choosing an optimal endpointing configuration given utterance-level audio features in an online setting, while avoiding hyperparameter grid-search. Our method does not require ground truth labels, and only uses online learning from reward signals without requiring annotated labels. Specifically, we propose a deep contextual multi-armed bandit-based approach, which combines the representational power of neural networks with the action exploration behavior of Thompson modeling algorithms. We compare our approach to several baselines, and show that our deep bandit models also succeed in reducing early cutoff errors while maintaining low latency

    Multi-Label Noise Robust Collaborative Learning Model for Remote Sensing Image Classification

    Full text link
    The development of accurate methods for multi-label classification (MLC) of remote sensing (RS) images is one of the most important research topics in RS. Methods based on Deep Convolutional Neural Networks (CNNs) have shown strong performance gains in RS MLC problems. However, CNN-based methods usually require a high number of reliable training images annotated by multiple land-cover class labels. Collecting such data is time-consuming and costly. To address this problem, the publicly available thematic products, which can include noisy labels, can be used to annotate RS images with zero-labeling cost. However, multi-label noise (which can be associated with wrong and missing label annotations) can distort the learning process of the MLC algorithm. The detection and correction of label noise are challenging tasks, especially in a multi-label scenario, where each image can be associated with more than one label. To address this problem, we propose a novel noise robust collaborative multi-label learning (RCML) method to alleviate the adverse effects of multi-label noise during the training phase of the CNN model. RCML identifies, ranks and excludes noisy multi-labels in RS images based on three main modules: 1) discrepancy module; 2) group lasso module; and 3) swap module. The discrepancy module ensures that the two networks learn diverse features, while producing the same predictions. The task of the group lasso module is to detect the potentially noisy labels assigned to the multi-labeled training images, while the swap module task is devoted to exchanging the ranking information between two networks. Unlike existing methods that make assumptions about the noise distribution, our proposed RCML does not make any prior assumption about the type of noise in the training set. Our code is publicly available online: http://www.noisy-labels-in-rs.orgComment: Our code is publicly available online: http://www.noisy-labels-in-rs.or

    RELEAF: An Algorithm for Learning and Exploiting Relevance

    Full text link
    Recommender systems, medical diagnosis, network security, etc., require on-going learning and decision-making in real time. These -- and many others -- represent perfect examples of the opportunities and difficulties presented by Big Data: the available information often arrives from a variety of sources and has diverse features so that learning from all the sources may be valuable but integrating what is learned is subject to the curse of dimensionality. This paper develops and analyzes algorithms that allow efficient learning and decision-making while avoiding the curse of dimensionality. We formalize the information available to the learner/decision-maker at a particular time as a context vector which the learner should consider when taking actions. In general the context vector is very high dimensional, but in many settings, the most relevant information is embedded into only a few relevant dimensions. If these relevant dimensions were known in advance, the problem would be simple -- but they are not. Moreover, the relevant dimensions may be different for different actions. Our algorithm learns the relevant dimensions for each action, and makes decisions based in what it has learned. Formally, we build on the structure of a contextual multi-armed bandit by adding and exploiting a relevance relation. We prove a general regret bound for our algorithm whose time order depends only on the maximum number of relevant dimensions among all the actions, which in the special case where the relevance relation is single-valued (a function), reduces to O~(T2(2−1))\tilde{O}(T^{2(\sqrt{2}-1)}); in the absence of a relevance relation, the best known contextual bandit algorithms achieve regret O~(T(D+1)/(D+2))\tilde{O}(T^{(D+1)/(D+2)}), where DD is the full dimension of the context vector.Comment: to appear in IEEE Journal of Selected Topics in Signal Processing, 201

    Learning Aerial Image Segmentation from Online Maps

    Get PDF
    This study deals with semantic segmentation of high-resolution (aerial) images where a semantic class label is assigned to each pixel via supervised classification as a basis for automatic map generation. Recently, deep convolutional neural networks (CNNs) have shown impressive performance and have quickly become the de-facto standard for semantic segmentation, with the added benefit that task-specific feature design is no longer necessary. However, a major downside of deep learning methods is that they are extremely data-hungry, thus aggravating the perennial bottleneck of supervised classification, to obtain enough annotated training data. On the other hand, it has been observed that they are rather robust against noise in the training labels. This opens up the intriguing possibility to avoid annotating huge amounts of training data, and instead train the classifier from existing legacy data or crowd-sourced maps which can exhibit high levels of noise. The question addressed in this paper is: can training with large-scale, publicly available labels replace a substantial part of the manual labeling effort and still achieve sufficient performance? Such data will inevitably contain a significant portion of errors, but in return virtually unlimited quantities of it are available in larger parts of the world. We adapt a state-of-the-art CNN architecture for semantic segmentation of buildings and roads in aerial images, and compare its performance when using different training data sets, ranging from manually labeled, pixel-accurate ground truth of the same city to automatic training data derived from OpenStreetMap data from distant locations. We report our results that indicate that satisfying performance can be obtained with significantly less manual annotation effort, by exploiting noisy large-scale training data.Comment: Published in IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSIN
    • …
    corecore