778 research outputs found

    Monitoring of Intracranial Pressure in Patients with Traumatic Brain Injury

    Get PDF
    Since Monro published his observations on the nature of the contents of the intracranial space in 1783 there has been investigation of the unique relationship between the contents of the skull and the intracranial pressure (ICP). This is particularly true following traumatic brain injury (TBI), where it is clear that elevated ICP due to the underlying pathological processes is associated with a poorer clinical outcome. Consequently, there is considerable interest in monitoring and manipulating ICP In patients with TBI.The two techniques most commonly used in clinical practice to monitor ICP are via an intraventricular or intraparenchymal catheter with a microtransducer system. Both of these techniques are invasive and are thus associated with complications such as haemorrhage and infection. For this reason, significant research effort has been directed towards development of a non-invasive method to measure ICP. These include imaging based studies using computed tomography (CT) and magnetic resonance imaging (MRI), transcranial Doppler sonography (TCD), near-infrared spectroscopy (NIRS), tympanic membrane displacement (TMD), visual-evoked potentials (VEPs), measurements of optic nerve sheath diameter (ONSD) and other measurements of the optic nerve, retina, pupil and ophthalmic artery.The principle aims of ICP monitoring in TBI are to allow early detection of secondary haemorrhage or ischaemic processes and to guide therapies that limit intracranial hypertension and optimise cerebral perfusion. However, information from the ICP value and the ICP waveform can also be used to estimate intracranial compliance, assess cerebrovascular pressure reactivity and attempt to forecast future episodes of intracranial hypertension

    A multivariate timeseries modeling approach to severity of illness assessment and forecasting in ICU with sparse, heterogeneous clinical data

    Get PDF
    The ability to determine patient acuity (or severity of illness) has immediate practical use for clinicians. We evaluate the use of multivariate timeseries modeling with the multi-task Gaussian process (GP) models using noisy, incomplete, sparse, heterogeneous and unevenly-sampled clinical data, including both physiological signals and clinical notes. The learned multi-task GP (MTGP) hyperparameters are then used to assess and forecast patient acuity. Experiments were conducted with two real clinical data sets acquired from ICU patients: firstly, estimating cerebrovascular pressure reactivity, an important indicator of secondary damage for traumatic brain injury patients, by learning the interactions between intracranial pressure and mean arterial blood pressure signals, and secondly, mortality prediction using clinical progress notes. In both cases, MTGPs provided improved results: an MTGP model provided better results than single-task GP models for signal interpolation and forecasting (0.91 vs 0.69 RMSE), and the use of MTGP hyperparameters obtained improved results when used as additional classification features (0.812 vs 0.788 AUC).Intel Science and Technology Center for Big DataNational Institutes of Health. (U.S.). National Library of Medicine (Biomedical Informatics Research Training Grant NIH/NLM 2T15 LM007092-22)National Institute of Biomedical Imaging and Bioengineering (U.S.) (R01 Grant EB001659)Singapore. Agency for Science, Technology and Research (Graduate Scholarship

    A multivariate timeseries modeling approach to severity of illness assessment and forecasting in ICU with sparse, heterogeneous clinical data

    Get PDF
    The ability to determine patient acuity (or severity of illness) has immediate practical use for clinicians. We evaluate the use of multivariate timeseries modeling with the multi-task Gaussian process (GP) models using noisy, incomplete, sparse, heterogeneous and unevenly-sampled clinical data, including both physiological signals and clinical notes. The learned multi-task GP (MTGP) hyperparameters are then used to assess and forecast patient acuity. Experiments were conducted with two real clinical data sets acquired from ICU patients: firstly, estimating cerebrovascular pressure reactivity, an important indicator of secondary damage for traumatic brain injury patients, by learning the interactions between intracranial pressure and mean arterial blood pressure signals, and secondly, mortality prediction using clinical progress notes. In both cases, MTGPs provided improved results: an MTGP model provided better results than single-task GP models for signal interpolation and forecasting (0.91 vs 0.69 RMSE), and the use of MTGP hyperparameters obtained improved results when used as additional classification features (0.812 vs 0.788 AUC).Intel Science and Technology Center for Big DataNational Institutes of Health. (U.S.). National Library of Medicine (Biomedical Informatics Research Training Grant NIH/NLM 2T15 LM007092-22)National Institute of Biomedical Imaging and Bioengineering (U.S.) (R01 Grant EB001659)Singapore. Agency for Science, Technology and Research (Graduate Scholarship

    Pathophysiological characterization of traumatic brain injury using novel analytical methods

    Get PDF
    Severity of traumatic brain injury is usually classified by Glasgow coma scale (GCS) as “mild”, "moderate" or "severe’, which does not capture the heterogeneity of the disease. According to current guidelines, intracranial pressure (ICP) should not exceed 22 mmHg, with no further recommendations concerning individualization or tolerable duration of intracranial hypertension. The aims of this thesis were to identify subgroups of patients beyond characterization using GCS, and to investigate the impact of duration and magnitude of intracranial hypertension on outcome, using data from the observational prospective study Collaborative European neurotrauma effectiveness research in TBI (CENTER-TBI). To investigate the temporal aspect of tolerable ICP elevations, we examined the correlation between dose of ICP and outcome represented by 6-month Glasgow outcome scale extended (GOSE). ICP dose was represented both by the number of events above thresholds for ICP magnitude and duration and by area under the ICP curve (i.e., “pressure time dose” (PTD)). A variation in tolerable ICP thresholds of 18 mmHg +/- 4 mmHg (2 standard deviations (SD)) for events with duration longer than five minutes was identified using a bootstrapping technique. PTD was correlated to both mortality and unfavorable outcome. A cerebrovascular autoregulation (CA) dependent ICP tolerability was identified. If CA was impaired, no tolerable ICP magnitude and duration thresholds were identified, while if CA was intact, both 19 mmHg for 5 minutes or longer and 15 mmHg for 50 minutes or longer were correlated to worse outcome. While no significant difference in PTD was seen between favorable and unfavorable outcome if CA was intact, there was a significant difference if CA was impaired. In a multivariable analysis, PTD did not remain a significant predictor of outcome when adjusting for other known predictors in TBI. In a causal inference analysis, both cerebrovascular autoregulation status and ICP-lowering therapies represented by the therapy intensity level (TIL) have a directional relationship with outcome. However, no direct causal relationship of ICP towards outcome was found. By applying an unsupervised clustering method, we identified six distinct admission clusters defined by GCS, lactate, oxygen saturation (SpO2), creatinine, glucose, base excess, pH, PaCO2, and body temperature. These clusters can be summarized in clinical presentation and metabolic profile. When clustering longitudinal features during the first week in the intensive care unit (ICU), no optimal number of clusters could be seen. However, glucose variation, a panel of brain biomarkers, and creatinine consistently described trajectories. Although no information on outcome was included in the models, both admission clusters and trajectories showed clear outcome differences, with mortality from 7 to 40% in the admission clusters and 4 to 85% in the trajectories. Adding cluster or trajectory labels to the established outcome prediction IMPACT model significantly improved outcome predictions. The results in this thesis support the importance of cerebrovascular autoregulation status as it was found that CA status was more informative towards outcome than ICP magnitude and duration. There was a variation in tolerable ICP intensity and duration dependent on whether CA was intact. Distinct clusters defined by GCS and metabolic profiles related to outcome suggest the importance of an extracranial evaluation in addition to GCS in TBI patients. Longitudinal trajectories of TBI patients in the ICU are highly characterized by glucose variation, brain biomarkers and creatinine

    Quality assessment of optic nerve sheath diameter ultrasonography: Scoping literature review and Delphi protocol.

    Get PDF
    BACKGROUND AND PURPOSE: The optic nerve is surrounded by the extension of meningeal coverings of the brain. When the pressure in the cerebrospinal fluid increases, it causes a distention of the optic nerve sheath diameter (ONSD), which allows the use of this measurement by ultrasonography (US) as a noninvasive surrogate of elevated intracranial pressure. However, ONSD measurements in the literature have exhibited significant heterogeneity, suggesting a need for consensus on ONSD image acquisition and measurement. We aim to establish a consensus for an ONSD US Quality Criteria Checklist (ONSD US QCC). METHODS: A scoping systematic review of published ultrasound ONSD imaging and measurement criteria was performed to guide the development of a preliminary ONSD US QCC that will undergo a modified Delphi study to reach expert consensus on ONSD quality criteria. The protocol of this modified Delphi study is presented in this manuscript. RESULTS: A total of 357 ultrasound studies were included in the review. Quality criteria were evaluated under five categories: probe selection, safety, positioning, image acquisition, and measurement. CONCLUSIONS: This review and Delphi protocol aim to establish ONSD US QCC. A broad consensus from this process may reduce the variability of ONSD measurements in future studies, which would ultimately translate into improved ONSD clinical applications. This protocol was reviewed and endorsed by the German Society of Ultrasound in Medicine

    Firearm-Related Pediatric Head Trauma: A Scoping Review.

    Get PDF
    BACKGROUND: Firearm-related injury is a significant cause of morbidity and mortality in pediatric populations. Despite a disproportionate role in the most morbid outcomes in both traumatic brain injury and firearm-related injury populations, firearm-related traumatic brain injury (frTBI) is an understudied epidemiological entity. There is need to increase understanding and promote interventions that reduce this burden of disease. OBJECTIVE: To assess the evidence characterizing pediatric frTBI to highlight trends and gaps regarding burden of disease and interventions to reduce frTBI. METHODS: We conducted a scoping review under Preferred Reporting Items for Systematic Reviews and Meta-Analyses-Scoping Review (PRISMA-ScR) guidelines on peer-reviewed studies across 5 databases (Medline OVID, EMBASE, Web of Science Legal Collection, PsychINFO, and Academic Search Complete). English studies examining pediatric frTBI epidemiology, prevention, and/or social or legal policy advocacy were included. Articles were excluded if they more generally discussed pediatric firearm-related injury without specific analysis of frTBI. RESULTS: Six studies satisfied inclusion criteria after screening and full-text assessment. Limited studies specifically addressed the burden of disease caused by frTBI. There was an increased risk for both injury and death from frTBI in men, preteenage and teenage youths, minorities, and individuals in firearm-owning households. Further study is required to ascertain if suggested methods of targeted patient screening, firearm-injury prevention counseling, and advocacy of safety-oriented policy tangibly affect rates or outcomes of pediatric frTBI. CONCLUSION: By understanding published epidemiological data and areas of intervention shown to reduce frTBIs, neurosurgeons can become further engaged in public health and prevention rather than strictly treatment after injury

    The Recurrence-Based Analysis of Intracranial Pressure

    Get PDF
    Modern computational approaches tied together with the power of mathematical science has pushed us closer to reach a deeper understanding of complex dynamical systems. Real-world biological and physiological systems now can be studied on account of the accessibility to fast, cheap and powerful computers. In particular, the field of neuroscience and brain data analysis has grown significantly in the recent years. Recurrence plots (RPs) are a relatively new approach for the analysis of nonlinear, non-stationary and noisy data. Rooted in topological properties of the system, RP visualizes the recurrence states of the dynamical system. Armed with the recurrence quantification measures, RP is even more rigorous in exploring and quantifying real-world dynamical system. In the present work, we benefit from the RP and RQA methods to study the behavior of intracranial pressure (ICP) waveforms. ICP is defined as the fluid pressure inside the skull which carries important information associated with the status of the patient. Our main goal is to detect sudden changes or extreme regime changing in these signals. Patterns appearing in RP can shed light on fundamental characteristics of the system. Our results suggest distinguishable patterns in the RPs of some subjects which are not detectable in the raw ICP signals. This work sets up the workflow for using RP analysis in online ICP monitoring of brain-injured patients
    • …
    corecore