19 research outputs found

    Powering One-shot Topological NAS with Stabilized Share-parameter Proxy

    Full text link
    One-shot NAS method has attracted much interest from the research community due to its remarkable training efficiency and capacity to discover high performance models. However, the search spaces of previous one-shot based works usually relied on hand-craft design and were short for flexibility on the network topology. In this work, we try to enhance the one-shot NAS by exploring high-performing network architectures in our large-scale Topology Augmented Search Space (i.e., over 3.4*10^10 different topological structures). Specifically, the difficulties for architecture searching in such a complex space has been eliminated by the proposed stabilized share-parameter proxy, which employs Stochastic Gradient Langevin Dynamics to enable fast shared parameter sampling, so as to achieve stabilized measurement of architecture performance even in search space with complex topological structures. The proposed method, namely Stablized Topological Neural Architecture Search (ST-NAS), achieves state-of-the-art performance under Multiply-Adds (MAdds) constraint on ImageNet. Our lite model ST-NAS-A achieves 76.4% top-1 accuracy with only 326M MAdds. Our moderate model ST-NAS-B achieves 77.9% top-1 accuracy just required 503M MAdds. Both of our models offer superior performances in comparison to other concurrent works on one-shot NAS

    DADA: Differentiable Automatic Data Augmentation

    Full text link
    Data augmentation (DA) techniques aim to increase data variability, and thus train deep networks with better generalisation. The pioneering AutoAugment automated the search for optimal DA policies with reinforcement learning. However, AutoAugment is extremely computationally expensive, limiting its wide applicability. Followup works such as Population Based Augmentation (PBA) and Fast AutoAugment improved efficiency, but their optimization speed remains a bottleneck. In this paper, we propose Differentiable Automatic Data Augmentation (DADA) which dramatically reduces the cost. DADA relaxes the discrete DA policy selection to a differentiable optimization problem via Gumbel-Softmax. In addition, we introduce an unbiased gradient estimator, RELAX, leading to an efficient and effective one-pass optimization strategy to learn an efficient and accurate DA policy. We conduct extensive experiments on CIFAR-10, CIFAR-100, SVHN, and ImageNet datasets. Furthermore, we demonstrate the value of Auto DA in pre-training for downstream detection problems. Results show our DADA is at least one order of magnitude faster than the state-of-the-art while achieving very comparable accuracy. The code is available at https://github.com/VDIGPKU/DADA

    Improving One-shot NAS by Suppressing the Posterior Fading

    Full text link
    There is a growing interest in automated neural architecture search (NAS). To improve the efficiency of NAS, previous approaches adopt weight sharing method to force all models share the same set of weights. However, it has been observed that a model performing better with shared weights does not necessarily perform better when trained alone. In this paper, we analyse existing weight sharing one-shot NAS approaches from a Bayesian point of view and identify the posterior fading problem, which compromises the effectiveness of shared weights. To alleviate this problem, we present a practical approach to guide the parameter posterior towards its true distribution. Moreover, a hard latency constraint is introduced during the search so that the desired latency can be achieved. The resulted method, namely Posterior Convergent NAS (PC-NAS), achieves state-of-the-art performance under standard GPU latency constraint on ImageNet. In our small search space, our model PC-NAS-S attains 76.8 % top-1 accuracy, 2.1% higher than MobileNetV2 (1.4x) with the same latency. When adopted to the large search space, PC-NAS-L achieves 78.1 % top-1 accuracy within 11ms. The discovered architecture also transfers well to other computer vision applications such as object detection and person re-identification

    Meta Approach to Data Augmentation Optimization

    Full text link
    Data augmentation policies drastically improve the performance of image recognition tasks, especially when the policies are optimized for the target data and tasks. In this paper, we propose to optimize image recognition models and data augmentation policies simultaneously to improve the performance using gradient descent. Unlike prior methods, our approach avoids using proxy tasks or reducing search space, and can directly improve the validation performance. Our method achieves efficient and scalable training by approximating the gradient of policies by implicit gradient with Neumann series approximation. We demonstrate that our approach can improve the performance of various image classification tasks, including ImageNet classification and fine-grained recognition, without using dataset-specific hyperparameter tuning

    Learning Data Augmentation with Online Bilevel Optimization for Image Classification

    Full text link
    Data augmentation is a key practice in machine learning for improving generalization performance. However, finding the best data augmentation hyperparameters requires domain knowledge or a computationally demanding search. We address this issue by proposing an efficient approach to automatically train a network that learns an effective distribution of transformations to improve its generalization. Using bilevel optimization, we directly optimize the data augmentation parameters using a validation set. This framework can be used as a general solution to learn the optimal data augmentation jointly with an end task model like a classifier. Results show that our joint training method produces an image classification accuracy that is comparable to or better than carefully hand-crafted data augmentation. Yet, it does not need an expensive external validation loop on the data augmentation hyperparameters

    PV-NAS: Practical Neural Architecture Search for Video Recognition

    Full text link
    Recently, deep learning has been utilized to solve video recognition problem due to its prominent representation ability. Deep neural networks for video tasks is highly customized and the design of such networks requires domain experts and costly trial and error tests. Recent advance in network architecture search has boosted the image recognition performance in a large margin. However, automatic designing of video recognition network is less explored. In this study, we propose a practical solution, namely Practical Video Neural Architecture Search (PV-NAS).Our PV-NAS can efficiently search across tremendous large scale of architectures in a novel spatial-temporal network search space using the gradient based search methods. To avoid sticking into sub-optimal solutions, we propose a novel learning rate scheduler to encourage sufficient network diversity of the searched models. Extensive empirical evaluations show that the proposed PV-NAS achieves state-of-the-art performance with much fewer computational resources. 1) Within light-weight models, our PV-NAS-L achieves 78.7% and 62.5% Top-1 accuracy on Kinetics-400 and Something-Something V2, which are better than previous state-of-the-art methods (i.e., TSM) with a large margin (4.6% and 3.4% on each dataset, respectively), and 2) among median-weight models, our PV-NAS-M achieves the best performance (also a new record)in the Something-Something V2 dataset

    Improving Auto-Augment via Augmentation-Wise Weight Sharing

    Full text link
    The recent progress on automatically searching augmentation policies has boosted the performance substantially for various tasks. A key component of automatic argumentation search is the evaluation process for a particular augmentation policy, which is utilized to return reward and usually runs thousands of times. A plain evaluation process, which includes full model training and validation, would be time-consuming. To achieve efficiency, many choose to sacrifice evaluation reliability for speed. In this paper, we dive into the dynamics of augmented training of the model. This inspires us to design a powerful and efficient proxy task based on the Augmentation-Wise Weight Sharing (AWS) to form a fast yet accurate evaluation process in an elegant way. Comprehensive analysis verifies the superiority of this approach in terms of effectiveness and efficiency. The augmentation policies found by our method achieve the best accuracy compared with existing auto-augmentation search methods. On CIFAR-10, we achieve a top-1 error rate of 1.24%, which is currently the best performing single model without extra training data. On ImageNet, we get a top-1 error rate of 20.36% for ResNet-50, which leads to 3.34% absolute error rate reduction over the baseline augmentation

    Direct Differentiable Augmentation Search

    Full text link
    Data augmentation has been an indispensable tool to improve the performance of deep neural networks, however the augmentation can hardly transfer among different tasks and datasets. Consequently, a recent trend is to adopt AutoML technique to learn proper augmentation policy without extensive hand-crafted tuning. In this paper, we propose an efficient differentiable search algorithm called Direct Differentiable Augmentation Search (DDAS). It exploits meta-learning with one-step gradient update and continuous relaxation to the expected training loss for efficient search. Our DDAS can achieve efficient augmentation search without relying on approximations such as Gumbel Softmax or second order gradient approximation. To further reduce the adverse effect of improper augmentations, we organize the search space into a two level hierarchy, in which we first decide whether to apply augmentation, and then determine the specific augmentation policy. On standard image classification benchmarks, our DDAS achieves state-of-the-art performance and efficiency tradeoff while reducing the search cost dramatically, e.g. 0.15 GPU hours for CIFAR-10. In addition, we also use DDAS to search augmentation for object detection task and achieve comparable performance with AutoAugment, while being 1000x faster.Comment: ICCV202

    AutoAdapt: Automated Segmentation Network Search for Unsupervised Domain Adaptation

    Full text link
    Neural network-based semantic segmentation has achieved remarkable results when large amounts of annotated data are available, that is, in the supervised case. However, such data is expensive to collect and so methods have been developed to adapt models trained on related, often synthetic data for which labels are readily available. Current adaptation approaches do not consider the dependence of the generalization/transferability of these models on network architecture. In this paper, we perform neural architecture search (NAS) to provide architecture-level perspective and analysis for domain adaptation. We identify the optimization gap that exists when searching architectures for unsupervised domain adaptation which makes this NAS problem uniquely difficult. We propose bridging this gap by using maximum mean discrepancy and regional weighted entropy to estimate the accuracy metric. Experimental results on several widely adopted benchmarks show that our proposed AutoAdapt framework indeed discovers architectures that improve the performance of a number of existing adaptation techniques.Comment: short version has been accepted at 1st NAS workshop co-organized with CVPR 202

    AutoDO: Robust AutoAugment for Biased Data with Label Noise via Scalable Probabilistic Implicit Differentiation

    Full text link
    AutoAugment has sparked an interest in automated augmentation methods for deep learning models. These methods estimate image transformation policies for train data that improve generalization to test data. While recent papers evolved in the direction of decreasing policy search complexity, we show that those methods are not robust when applied to biased and noisy data. To overcome these limitations, we reformulate AutoAugment as a generalized automated dataset optimization (AutoDO) task that minimizes the distribution shift between test data and distorted train dataset. In our AutoDO model, we explicitly estimate a set of per-point hyperparameters to flexibly change distribution of train data. In particular, we include hyperparameters for augmentation, loss weights, and soft-labels that are jointly estimated using implicit differentiation. We develop a theoretical probabilistic interpretation of this framework using Fisher information and show that its complexity scales linearly with the dataset size. Our experiments on SVHN, CIFAR-10/100, and ImageNet classification show up to 9.3% improvement for biased datasets with label noise compared to prior methods and, importantly, up to 36.6% gain for underrepresented SVHN classes.Comment: Accepted to CVPR 2021. Preprin
    corecore