12,862 research outputs found

    DDLSTM: Dual-Domain LSTM for Cross-Dataset Action Recognition

    Get PDF
    Domain alignment in convolutional networks aims to learn the degree of layer-specific feature alignment beneficial to the joint learning of source and target datasets. While increasingly popular in convolutional networks, there have been no previous attempts to achieve domain alignment in recurrent networks. Similar to spatial features, both source and target domains are likely to exhibit temporal dependencies that can be jointly learnt and aligned. In this paper we introduce Dual-Domain LSTM (DDLSTM), an architecture that is able to learn temporal dependencies from two domains concurrently. It performs cross-contaminated batch normalisation on both input-to-hidden and hidden-to-hidden weights, and learns the parameters for cross-contamination, for both single-layer and multi-layer LSTM architectures. We evaluate DDLSTM on frame-level action recognition using three datasets, taking a pair at a time, and report an average increase in accuracy of 3.5%. The proposed DDLSTM architecture outperforms standard, fine-tuned, and batch-normalised LSTMs.Comment: To appear in CVPR 201

    Thirty Years of Machine Learning: The Road to Pareto-Optimal Wireless Networks

    Full text link
    Future wireless networks have a substantial potential in terms of supporting a broad range of complex compelling applications both in military and civilian fields, where the users are able to enjoy high-rate, low-latency, low-cost and reliable information services. Achieving this ambitious goal requires new radio techniques for adaptive learning and intelligent decision making because of the complex heterogeneous nature of the network structures and wireless services. Machine learning (ML) algorithms have great success in supporting big data analytics, efficient parameter estimation and interactive decision making. Hence, in this article, we review the thirty-year history of ML by elaborating on supervised learning, unsupervised learning, reinforcement learning and deep learning. Furthermore, we investigate their employment in the compelling applications of wireless networks, including heterogeneous networks (HetNets), cognitive radios (CR), Internet of things (IoT), machine to machine networks (M2M), and so on. This article aims for assisting the readers in clarifying the motivation and methodology of the various ML algorithms, so as to invoke them for hitherto unexplored services as well as scenarios of future wireless networks.Comment: 46 pages, 22 fig
    • …
    corecore