5 research outputs found

    Personalized Graph Federated Learning with Differential Privacy

    Full text link
    This paper presents a personalized graph federated learning (PGFL) framework in which distributedly connected servers and their respective edge devices collaboratively learn device or cluster-specific models while maintaining the privacy of every individual device. The proposed approach exploits similarities among different models to provide a more relevant experience for each device, even in situations with diverse data distributions and disproportionate datasets. Furthermore, to ensure a secure and efficient approach to collaborative personalized learning, we study a variant of the PGFL implementation that utilizes differential privacy, specifically zero-concentrated differential privacy, where a noise sequence perturbs model exchanges. Our mathematical analysis shows that the proposed privacy-preserving PGFL algorithm converges to the optimal cluster-specific solution for each cluster in linear time. It also shows that exploiting similarities among clusters leads to an alternative output whose distance to the original solution is bounded, and that this bound can be adjusted by modifying the algorithm's hyperparameters. Further, our analysis shows that the algorithm ensures local differential privacy for all clients in terms of zero-concentrated differential privacy. Finally, the performance of the proposed PGFL algorithm is examined by performing numerical experiments in the context of regression and classification using synthetic data and the MNIST dataset

    Multitask Online Mirror Descent

    Full text link
    We introduce and analyze MT-OMD, a multitask generalization of Online Mirror Descent (OMD) which operates by sharing updates between tasks. We prove that the regret of MT-OMD is of order 1+σ2(N−1)T\sqrt{1 + \sigma^2(N-1)}\sqrt{T}, where σ2\sigma^2 is the task variance according to the geometry induced by the regularizer, NN is the number of tasks, and TT is the time horizon. Whenever tasks are similar, that is σ2≤1\sigma^2 \le 1, our method improves upon the NT\sqrt{NT} bound obtained by running independent OMDs on each task. We further provide a matching lower bound, and show that our multitask extensions of Online Gradient Descent and Exponentiated Gradient, two major instances of OMD, enjoy closed-form updates, making them easy to use in practice. Finally, we present experiments on both synthetic and real-world datasets supporting our findings

    Heterogeneous Federated Learning: State-of-the-art and Research Challenges

    Full text link
    Federated learning (FL) has drawn increasing attention owing to its potential use in large-scale industrial applications. Existing federated learning works mainly focus on model homogeneous settings. However, practical federated learning typically faces the heterogeneity of data distributions, model architectures, network environments, and hardware devices among participant clients. Heterogeneous Federated Learning (HFL) is much more challenging, and corresponding solutions are diverse and complex. Therefore, a systematic survey on this topic about the research challenges and state-of-the-art is essential. In this survey, we firstly summarize the various research challenges in HFL from five aspects: statistical heterogeneity, model heterogeneity, communication heterogeneity, device heterogeneity, and additional challenges. In addition, recent advances in HFL are reviewed and a new taxonomy of existing HFL methods is proposed with an in-depth analysis of their pros and cons. We classify existing methods from three different levels according to the HFL procedure: data-level, model-level, and server-level. Finally, several critical and promising future research directions in HFL are discussed, which may facilitate further developments in this field. A periodically updated collection on HFL is available at https://github.com/marswhu/HFL_Survey.Comment: 42 pages, 11 figures, and 4 table
    corecore