7,471 research outputs found

    Training Faster by Separating Modes of Variation in Batch-normalized Models

    Full text link
    Batch Normalization (BN) is essential to effectively train state-of-the-art deep Convolutional Neural Networks (CNN). It normalizes inputs to the layers during training using the statistics of each mini-batch. In this work, we study BN from the viewpoint of Fisher kernels. We show that assuming samples within a mini-batch are from the same probability density function, then BN is identical to the Fisher vector of a Gaussian distribution. That means BN can be explained in terms of kernels that naturally emerge from the probability density function of the underlying data distribution. However, given the rectifying non-linearities employed in CNN architectures, distribution of inputs to the layers show heavy tail and asymmetric characteristics. Therefore, we propose approximating underlying data distribution not with one, but a mixture of Gaussian densities. Deriving Fisher vector for a Gaussian Mixture Model (GMM), reveals that BN can be improved by independently normalizing with respect to the statistics of disentangled sub-populations. We refer to our proposed soft piecewise version of BN as Mixture Normalization (MN). Through extensive set of experiments on CIFAR-10 and CIFAR-100, we show that MN not only effectively accelerates training image classification and Generative Adversarial networks, but also reaches higher quality models

    A probabilistic model for learning in cortical microcircuit motifs with data-based divisive inhibition

    Full text link
    Previous theoretical studies on the interaction of excitatory and inhibitory neurons proposed to model this cortical microcircuit motif as a so-called Winner-Take-All (WTA) circuit. A recent modeling study however found that the WTA model is not adequate for data-based softer forms of divisive inhibition as found in a microcircuit motif in cortical layer 2/3. We investigate here through theoretical analysis the role of such softer divisive inhibition for the emergence of computational operations and neural codes under spike-timing dependent plasticity (STDP). We show that in contrast to WTA models - where the network activity has been interpreted as probabilistic inference in a generative mixture distribution - this network dynamics approximates inference in a noisy-OR-like generative model that explains the network input based on multiple hidden causes. Furthermore, we show that STDP optimizes the parameters of this model by approximating online the expectation maximization (EM) algorithm. This theoretical analysis corroborates a preceding modelling study which suggested that the learning dynamics of this layer 2/3 microcircuit motif extracts a specific modular representation of the input and thus performs blind source separation on the input statistics.Comment: 24 pages, 5 figure

    On Generalized Bayesian Data Fusion with Complex Models in Large Scale Networks

    Full text link
    Recent advances in communications, mobile computing, and artificial intelligence have greatly expanded the application space of intelligent distributed sensor networks. This in turn motivates the development of generalized Bayesian decentralized data fusion (DDF) algorithms for robust and efficient information sharing among autonomous agents using probabilistic belief models. However, DDF is significantly challenging to implement for general real-world applications requiring the use of dynamic/ad hoc network topologies and complex belief models, such as Gaussian mixtures or hybrid Bayesian networks. To tackle these issues, we first discuss some new key mathematical insights about exact DDF and conservative approximations to DDF. These insights are then used to develop novel generalized DDF algorithms for complex beliefs based on mixture pdfs and conditional factors. Numerical examples motivated by multi-robot target search demonstrate that our methods lead to significantly better fusion results, and thus have great potential to enhance distributed intelligent reasoning in sensor networks.Comment: Revised version of paper submitted to 2013 Workshop on Wireless Intelligent Sensor Networks (WISeNET 2013) at Duke University, June 5, 201

    HyperAdam: A Learnable Task-Adaptive Adam for Network Training

    Full text link
    Deep neural networks are traditionally trained using human-designed stochastic optimization algorithms, such as SGD and Adam. Recently, the approach of learning to optimize network parameters has emerged as a promising research topic. However, these learned black-box optimizers sometimes do not fully utilize the experience in human-designed optimizers, therefore have limitation in generalization ability. In this paper, a new optimizer, dubbed as \textit{HyperAdam}, is proposed that combines the idea of "learning to optimize" and traditional Adam optimizer. Given a network for training, its parameter update in each iteration generated by HyperAdam is an adaptive combination of multiple updates generated by Adam with varying decay rates. The combination weights and decay rates in HyperAdam are adaptively learned depending on the task. HyperAdam is modeled as a recurrent neural network with AdamCell, WeightCell and StateCell. It is justified to be state-of-the-art for various network training, such as multilayer perceptron, CNN and LSTM

    Machine Learning for Wireless Communications in the Internet of Things: A Comprehensive Survey

    Full text link
    The Internet of Things (IoT) is expected to require more effective and efficient wireless communications than ever before. For this reason, techniques such as spectrum sharing, dynamic spectrum access, extraction of signal intelligence and optimized routing will soon become essential components of the IoT wireless communication paradigm. Given that the majority of the IoT will be composed of tiny, mobile, and energy-constrained devices, traditional techniques based on a priori network optimization may not be suitable, since (i) an accurate model of the environment may not be readily available in practical scenarios; (ii) the computational requirements of traditional optimization techniques may prove unbearable for IoT devices. To address the above challenges, much research has been devoted to exploring the use of machine learning to address problems in the IoT wireless communications domain. This work provides a comprehensive survey of the state of the art in the application of machine learning techniques to address key problems in IoT wireless communications with an emphasis on its ad hoc networking aspect. First, we present extensive background notions of machine learning techniques. Then, by adopting a bottom-up approach, we examine existing work on machine learning for the IoT at the physical, data-link and network layer of the protocol stack. Thereafter, we discuss directions taken by the community towards hardware implementation to ensure the feasibility of these techniques. Additionally, before concluding, we also provide a brief discussion of the application of machine learning in IoT beyond wireless communication. Finally, each of these discussions is accompanied by a detailed analysis of the related open problems and challenges.Comment: Ad Hoc Networks Journa

    Neural Simpletrons - Minimalistic Directed Generative Networks for Learning with Few Labels

    Full text link
    Classifiers for the semi-supervised setting often combine strong supervised models with additional learning objectives to make use of unlabeled data. This results in powerful though very complex models that are hard to train and that demand additional labels for optimal parameter tuning, which are often not given when labeled data is very sparse. We here study a minimalistic multi-layer generative neural network for semi-supervised learning in a form and setting as similar to standard discriminative networks as possible. Based on normalized Poisson mixtures, we derive compact and local learning and neural activation rules. Learning and inference in the network can be scaled using standard deep learning tools for parallelized GPU implementation. With the single objective of likelihood optimization, both labeled and unlabeled data are naturally incorporated into learning. Empirical evaluations on standard benchmarks show, that for datasets with few labels the derived minimalistic network improves on all classical deep learning approaches and is competitive with their recent variants without the need of additional labels for parameter tuning. Furthermore, we find that the studied network is the best performing monolithic (`non-hybrid') system for few labels, and that it can be applied in the limit of very few labels, where no other system has been reported to operate so far

    From Bayesian Sparsity to Gated Recurrent Nets

    Full text link
    The iterations of many first-order algorithms, when applied to minimizing common regularized regression functions, often resemble neural network layers with pre-specified weights. This observation has prompted the development of learning-based approaches that purport to replace these iterations with enhanced surrogates forged as DNN models from available training data. For example, important NP-hard sparse estimation problems have recently benefitted from this genre of upgrade, with simple feedforward or recurrent networks ousting proximal gradient-based iterations. Analogously, this paper demonstrates that more powerful Bayesian algorithms for promoting sparsity, which rely on complex multi-loop majorization-minimization techniques, mirror the structure of more sophisticated long short-term memory (LSTM) networks, or alternative gated feedback networks previously designed for sequence prediction. As part of this development, we examine the parallels between latent variable trajectories operating across multiple time-scales during optimization, and the activations within deep network structures designed to adaptively model such characteristic sequences. The resulting insights lead to a novel sparse estimation system that, when granted training data, can estimate optimal solutions efficiently in regimes where other algorithms fail, including practical direction-of-arrival (DOA) and 3D geometry recovery problems. The underlying principles we expose are also suggestive of a learning process for a richer class of multi-loop algorithms in other domains

    High-dimensional Time Series Prediction with Missing Values

    Full text link
    High-dimensional time series prediction is needed in applications as diverse as demand forecasting and climatology. Often, such applications require methods that are both highly scalable, and deal with noisy data in terms of corruptions or missing values. Classical time series methods usually fall short of handling both these issues. In this paper, we propose to adapt matrix matrix completion approaches that have previously been successfully applied to large scale noisy data, but which fail to adequately model high-dimensional time series due to temporal dependencies. We present a novel temporal regularized matrix factorization (TRMF) framework which supports data-driven temporal dependency learning and enables forecasting ability to our new matrix factorization approach. TRMF is highly general, and subsumes many existing matrix factorization approaches for time series data. We make interesting connections to graph regularized matrix factorization methods in the context of learning the dependencies. Experiments on both real and synthetic data show that TRMF outperforms several existing approaches for common time series tasks

    Multiscale CNN based Deep Metric Learning for Bioacoustic Classification: Overcoming Training Data Scarcity Using Dynamic Triplet Loss

    Full text link
    This paper proposes multiscale convolutional neural network (CNN)-based deep metric learning for bioacoustic classification, under low training data conditions. The proposed CNN is characterized by the utilization of four different filter sizes at each level to analyze input feature maps. This multiscale nature helps in describing different bioacoustic events effectively: smaller filters help in learning the finer details of bioacoustic events, whereas, larger filters help in analyzing a larger context leading to global details. A dynamic triplet loss is employed in the proposed CNN architecture to learn a transformation from the input space to the embedding space, where classification is performed. The triplet loss helps in learning this transformation by analyzing three examples, referred to as triplets, at a time where intra-class distance is minimized while maximizing the inter-class separation by a dynamically increasing margin. The number of possible triplets increases cubically with the dataset size, making triplet loss more suitable than the softmax cross-entropy loss in low training data conditions. Experiments on three different publicly available datasets show that the proposed framework performs better than existing bioacoustic classification frameworks. Experimental results also confirm the superiority of the triplet loss over the cross-entropy loss in low training data conditionsComment: Under Review at JASA. Primitive version of paper. We are still working on getting better performances out of the comparative method

    Machine learning in acoustics: theory and applications

    Full text link
    Acoustic data provide scientific and engineering insights in fields ranging from biology and communications to ocean and Earth science. We survey the recent advances and transformative potential of machine learning (ML), including deep learning, in the field of acoustics. ML is a broad family of techniques, which are often based in statistics, for automatically detecting and utilizing patterns in data. Relative to conventional acoustics and signal processing, ML is data-driven. Given sufficient training data, ML can discover complex relationships between features and desired labels or actions, or between features themselves. With large volumes of training data, ML can discover models describing complex acoustic phenomena such as human speech and reverberation. ML in acoustics is rapidly developing with compelling results and significant future promise. We first introduce ML, then highlight ML developments in four acoustics research areas: source localization in speech processing, source localization in ocean acoustics, bioacoustics, and environmental sounds in everyday scenes.Comment: Published with free access in Journal of the Acoustical Society of America, 27 Nov. 201
    • …
    corecore