24,427 research outputs found

    Adversarial Attacks on Online Learning to Rank with Stochastic Click Models

    Full text link
    We propose the first study of adversarial attacks on online learning to rank. The goal of the adversary is to misguide the online learning to rank algorithm to place the target item on top of the ranking list linear times to time horizon TT with a sublinear attack cost. We propose generalized list poisoning attacks that perturb the ranking list presented to the user. This strategy can efficiently attack any no-regret ranker in general stochastic click models. Furthermore, we propose a click poisoning-based strategy named attack-then-quit that can efficiently attack two representative OLTR algorithms for stochastic click models. We theoretically analyze the success and cost upper bound of the two proposed methods. Experimental results based on synthetic and real-world data further validate the effectiveness and cost-efficiency of the proposed attack strategies

    Multi-party Poisoning through Generalized pp-Tampering

    Get PDF
    In a poisoning attack against a learning algorithm, an adversary tampers with a fraction of the training data TT with the goal of increasing the classification error of the constructed hypothesis/model over the final test distribution. In the distributed setting, TT might be gathered gradually from mm data providers P1,…,PmP_1,\dots,P_m who generate and submit their shares of TT in an online way. In this work, we initiate a formal study of (k,p)(k,p)-poisoning attacks in which an adversary controls k∈[n]k\in[n] of the parties, and even for each corrupted party PiP_i, the adversary submits some poisoned data Tiβ€²T'_i on behalf of PiP_i that is still "(1βˆ’p)(1-p)-close" to the correct data TiT_i (e.g., 1βˆ’p1-p fraction of Tiβ€²T'_i is still honestly generated). For k=mk=m, this model becomes the traditional notion of poisoning, and for p=1p=1 it coincides with the standard notion of corruption in multi-party computation. We prove that if there is an initial constant error for the generated hypothesis hh, there is always a (k,p)(k,p)-poisoning attacker who can decrease the confidence of hh (to have a small error), or alternatively increase the error of hh, by Ξ©(pβ‹…k/m)\Omega(p \cdot k/m). Our attacks can be implemented in polynomial time given samples from the correct data, and they use no wrong labels if the original distributions are not noisy. At a technical level, we prove a general lemma about biasing bounded functions f(x1,…,xn)∈[0,1]f(x_1,\dots,x_n)\in[0,1] through an attack model in which each block xix_i might be controlled by an adversary with marginal probability pp in an online way. When the probabilities are independent, this coincides with the model of pp-tampering attacks, thus we call our model generalized pp-tampering. We prove the power of such attacks by incorporating ideas from the context of coin-flipping attacks into the pp-tampering model and generalize the results in both of these areas

    Data Poisoning Attacks in Contextual Bandits

    Full text link
    We study offline data poisoning attacks in contextual bandits, a class of reinforcement learning problems with important applications in online recommendation and adaptive medical treatment, among others. We provide a general attack framework based on convex optimization and show that by slightly manipulating rewards in the data, an attacker can force the bandit algorithm to pull a target arm for a target contextual vector. The target arm and target contextual vector are both chosen by the attacker. That is, the attacker can hijack the behavior of a contextual bandit. We also investigate the feasibility and the side effects of such attacks, and identify future directions for defense. Experiments on both synthetic and real-world data demonstrate the efficiency of the attack algorithm.Comment: GameSec 201
    • …
    corecore