3,528 research outputs found

    SamBaTen: Sampling-based Batch Incremental Tensor Decomposition

    Full text link
    Tensor decompositions are invaluable tools in analyzing multimodal datasets. In many real-world scenarios, such datasets are far from being static, to the contrary they tend to grow over time. For instance, in an online social network setting, as we observe new interactions over time, our dataset gets updated in its "time" mode. How can we maintain a valid and accurate tensor decomposition of such a dynamically evolving multimodal dataset, without having to re-compute the entire decomposition after every single update? In this paper we introduce SaMbaTen, a Sampling-based Batch Incremental Tensor Decomposition algorithm, which incrementally maintains the decomposition given new updates to the tensor dataset. SaMbaTen is able to scale to datasets that the state-of-the-art in incremental tensor decomposition is unable to operate on, due to its ability to effectively summarize the existing tensor and the incoming updates, and perform all computations in the reduced summary space. We extensively evaluate SaMbaTen using synthetic and real datasets. Indicatively, SaMbaTen achieves comparable accuracy to state-of-the-art incremental and non-incremental techniques, while being 25-30 times faster. Furthermore, SaMbaTen scales to very large sparse and dense dynamically evolving tensors of dimensions up to 100K x 100K x 100K where state-of-the-art incremental approaches were not able to operate

    Graph Summarization

    Full text link
    The continuous and rapid growth of highly interconnected datasets, which are both voluminous and complex, calls for the development of adequate processing and analytical techniques. One method for condensing and simplifying such datasets is graph summarization. It denotes a series of application-specific algorithms designed to transform graphs into more compact representations while preserving structural patterns, query answers, or specific property distributions. As this problem is common to several areas studying graph topologies, different approaches, such as clustering, compression, sampling, or influence detection, have been proposed, primarily based on statistical and optimization methods. The focus of our chapter is to pinpoint the main graph summarization methods, but especially to focus on the most recent approaches and novel research trends on this topic, not yet covered by previous surveys.Comment: To appear in the Encyclopedia of Big Data Technologie

    A multi-way data analysis approach for structural health monitoring of a cable-stayed bridge

    Full text link
    © The Author(s) 2018. A large-scale cable-stayed bridge in the state of New South Wales, Australia, has been extensively instrumented with an array of accelerometer, strain gauge, and environmental sensors. The real-time continuous response of the bridge has been collected since July 2016. This study aims at condition assessment of this bridge by investigating three aspects of structural health monitoring including damage detection, damage localization, and damage severity assessment. A novel data analysis algorithm based on incremental multi-way data analysis is proposed to analyze the dynamic response of the bridge. This method applies incremental tensor analysis for data fusion and feature extraction, and further uses one-class support vector machine on this feature to detect anomalies. A total of 15 different damage scenarios were investigated; damage was physically simulated by locating stationary vehicles with different masses at various locations along the span of the bridge to change the condition of the bridge. The effect of damage on the fundamental frequency of the bridge was investigated and a maximum change of 4.4% between the intact and damage states was observed which corresponds to a small severity damage. Our extensive investigations illustrate that the proposed technique can provide reliable characterization of damage in this cable-stayed bridge in terms of detection, localization and assessment. The contribution of the work is threefold; first, an extensive structural health monitoring system was deployed on a cable-stayed bridge in operation; second, an incremental tensor analysis was proposed to analyze time series responses from multiple sensors for online damage identification; and finally, the robustness of the proposed method was validated using extensive field test data by considering various damage scenarios in the presence of environmental variabilities

    CVABS: Moving Object Segmentation with Common Vector Approach for Videos

    Full text link
    Background modelling is a fundamental step for several real-time computer vision applications that requires security systems and monitoring. An accurate background model helps detecting activity of moving objects in the video. In this work, we have developed a new subspace based background modelling algorithm using the concept of Common Vector Approach with Gram-Schmidt orthogonalization. Once the background model that involves the common characteristic of different views corresponding to the same scene is acquired, a smart foreground detection and background updating procedure is applied based on dynamic control parameters. A variety of experiments is conducted on different problem types related to dynamic backgrounds. Several types of metrics are utilized as objective measures and the obtained visual results are judged subjectively. It was observed that the proposed method stands successfully for all problem types reported on CDNet2014 dataset by updating the background frames with a self-learning feedback mechanism.Comment: 12 Pages, 4 Figures, 1 Tabl
    • …
    corecore