66,376 research outputs found

    Dynamic vs Oblivious Routing in Network Design

    Full text link
    Consider the robust network design problem of finding a minimum cost network with enough capacity to route all traffic demand matrices in a given polytope. We investigate the impact of different routing models in this robust setting: in particular, we compare \emph{oblivious} routing, where the routing between each terminal pair must be fixed in advance, to \emph{dynamic} routing, where routings may depend arbitrarily on the current demand. Our main result is a construction that shows that the optimal cost of such a network based on oblivious routing (fractional or integral) may be a factor of \BigOmega(\log{n}) more than the cost required when using dynamic routing. This is true even in the important special case of the asymmetric hose model. This answers a question in \cite{chekurisurvey07}, and is tight up to constant factors. Our proof technique builds on a connection between expander graphs and robust design for single-sink traffic patterns \cite{ChekuriHardness07}

    Cluster Before You Hallucinate: Approximating Node-Capacitated Network Design and Energy Efficient Routing

    Full text link
    We consider circuit routing with an objective of minimizing energy, in a network of routers that are speed scalable and that may be shutdown when idle. We consider both multicast routing and unicast routing. It is known that this energy minimization problem can be reduced to a capacitated flow network design problem, where vertices have a common capacity but arbitrary costs, and the goal is to choose a minimum cost collection of vertices whose induced subgraph will support the specified flow requirements. For the multicast (single-sink) capacitated design problem we give a polynomial-time algorithm that is O(log^3n)-approximate with O(log^4 n) congestion. This translates back to a O(log ^(4{\alpha}+3) n)-approximation for the multicast energy-minimization routing problem, where {\alpha} is the polynomial exponent in the dynamic power used by a router. For the unicast (multicommodity) capacitated design problem we give a polynomial-time algorithm that is O(log^5 n)-approximate with O(log^12 n) congestion, which translates back to a O(log^(12{\alpha}+5) n)-approximation for the unicast energy-minimization routing problem.Comment: 22 pages (full version of STOC 2014 paper

    Approximating Generalized Network Design under (Dis)economies of Scale with Applications to Energy Efficiency

    Full text link
    In a generalized network design (GND) problem, a set of resources are assigned to multiple communication requests. Each request contributes its weight to the resources it uses and the total load on a resource is then translated to the cost it incurs via a resource specific cost function. For example, a request may be to establish a virtual circuit, thus contributing to the load on each edge in the circuit. Motivated by energy efficiency applications, recently, there is a growing interest in GND using cost functions that exhibit (dis)economies of scale ((D)oS), namely, cost functions that appear subadditive for small loads and superadditive for larger loads. The current paper advances the existing literature on approximation algorithms for GND problems with (D)oS cost functions in various aspects: (1) we present a generic approximation framework that yields approximation results for a much wider family of requests in both directed and undirected graphs; (2) our framework allows for unrelated weights, thus providing the first non-trivial approximation for the problem of scheduling unrelated parallel machines with (D)oS cost functions; (3) our framework is fully combinatorial and runs in strongly polynomial time; (4) the family of (D)oS cost functions considered in the current paper is more general than the one considered in the existing literature, providing a more accurate abstraction for practical energy conservation scenarios; and (5) we obtain the first approximation ratio for GND with (D)oS cost functions that depends only on the parameters of the resources' technology and does not grow with the number of resources, the number of requests, or their weights. The design of our framework relies heavily on Roughgarden's smoothness toolbox (JACM 2015), thus demonstrating the possible usefulness of this toolbox in the area of approximation algorithms.Comment: 39 pages, 1 figure. An extended abstract of this paper is to appear in the 50th Annual ACM Symposium on the Theory of Computing (STOC 2018

    Auctioning Bulk Mobile Messages

    Get PDF
    The search for enablers of continued growth of SMS traffic, as well asthe take-off of the more diversified MMS message contents, open up forenterprises the potential of bulk use of mobile messaging , instead ofessentially one-by-one use. In parallel, such enterprises or valueadded services needing mobile messaging in bulk - for spot use or foruse over a prescribed period of time - want to minimize totalacquisition costs, from a set of technically approved providers ofmessaging capacity.This leads naturally to the evaluation of auctioning for bulk SMS orMMS messaging capacity, with the intrinsic advantages therein such asreduction in acquisition costs, allocation efficiency, and optimality.The paper shows, with extensive results as evidence from simulationscarried out in the Rotterdam School of Management e-Auction room, howmulti-attribute reverse auctions perform for the enterprise-buyer, aswell as for the messaging capacity-sellers. We compare 1- and 5-roundauctions, to show the learning effect and the benefits thereof to thevarious parties. The sensitivity will be reported to changes in theenterprise's and the capacity providers utilities and prioritiesbetween message attributes (such as price, size, security, anddelivery delay). At the organizational level, the paper also considersalternate organizational deployment schemes and properties for anoff-line or spot bulk messaging capacity market, subject to technicaland regulatory constraints.MMS;EMS;Mobile commerce;SMS;multi-attribute auctions

    A dynamic pricing model for unifying programmatic guarantee and real-time bidding in display advertising

    Full text link
    There are two major ways of selling impressions in display advertising. They are either sold in spot through auction mechanisms or in advance via guaranteed contracts. The former has achieved a significant automation via real-time bidding (RTB); however, the latter is still mainly done over the counter through direct sales. This paper proposes a mathematical model that allocates and prices the future impressions between real-time auctions and guaranteed contracts. Under conventional economic assumptions, our model shows that the two ways can be seamless combined programmatically and the publisher's revenue can be maximized via price discrimination and optimal allocation. We consider advertisers are risk-averse, and they would be willing to purchase guaranteed impressions if the total costs are less than their private values. We also consider that an advertiser's purchase behavior can be affected by both the guaranteed price and the time interval between the purchase time and the impression delivery date. Our solution suggests an optimal percentage of future impressions to sell in advance and provides an explicit formula to calculate at what prices to sell. We find that the optimal guaranteed prices are dynamic and are non-decreasing over time. We evaluate our method with RTB datasets and find that the model adopts different strategies in allocation and pricing according to the level of competition. From the experiments we find that, in a less competitive market, lower prices of the guaranteed contracts will encourage the purchase in advance and the revenue gain is mainly contributed by the increased competition in future RTB. In a highly competitive market, advertisers are more willing to purchase the guaranteed contracts and thus higher prices are expected. The revenue gain is largely contributed by the guaranteed selling.Comment: Chen, Bowei and Yuan, Shuai and Wang, Jun (2014) A dynamic pricing model for unifying programmatic guarantee and real-time bidding in display advertising. In: The Eighth International Workshop on Data Mining for Online Advertising, 24 - 27 August 2014, New York Cit

    Muppet: MapReduce-Style Processing of Fast Data

    Full text link
    MapReduce has emerged as a popular method to process big data. In the past few years, however, not just big data, but fast data has also exploded in volume and availability. Examples of such data include sensor data streams, the Twitter Firehose, and Facebook updates. Numerous applications must process fast data. Can we provide a MapReduce-style framework so that developers can quickly write such applications and execute them over a cluster of machines, to achieve low latency and high scalability? In this paper we report on our investigation of this question, as carried out at Kosmix and WalmartLabs. We describe MapUpdate, a framework like MapReduce, but specifically developed for fast data. We describe Muppet, our implementation of MapUpdate. Throughout the description we highlight the key challenges, argue why MapReduce is not well suited to address them, and briefly describe our current solutions. Finally, we describe our experience and lessons learned with Muppet, which has been used extensively at Kosmix and WalmartLabs to power a broad range of applications in social media and e-commerce.Comment: VLDB201

    IDMoB: IoT Data Marketplace on Blockchain

    Full text link
    Today, Internet of Things (IoT) devices are the powerhouse of data generation with their ever-increasing numbers and widespread penetration. Similarly, artificial intelligence (AI) and machine learning (ML) solutions are getting integrated to all kinds of services, making products significantly more "smarter". The centerpiece of these technologies is "data". IoT device vendors should be able keep up with the increased throughput and come up with new business models. On the other hand, AI/ML solutions will produce better results if training data is diverse and plentiful. In this paper, we propose a blockchain-based, decentralized and trustless data marketplace where IoT device vendors and AI/ML solution providers may interact and collaborate. By facilitating a transparent data exchange platform, access to consented data will be democratized and the variety of services targeting end-users will increase. Proposed data marketplace is implemented as a smart contract on Ethereum blockchain and Swarm is used as the distributed storage platform.Comment: Presented at Crypto Valley Conference on Blockchain Technology (CVCBT 2018), 20-22 June 2018 - published version may diffe
    • …
    corecore