3 research outputs found

    Online Balanced Motion Generation for Humanoid Robots

    Full text link
    Reducing the complexity of higher order problems can enable solving them in analytical ways. In this paper, we propose an analytic whole body motion generator for humanoid robots. Our approach targets inexpensive platforms that possess position controlled joints and have limited feedback capabilities. By analysing the mass distribution in a humanoid-like body, we find relations between limb movement and their respective CoM positions. A full pose of a humanoid robot is then described with five point-masses, with one attached to the trunk and the remaining four assigned to each limb. The weighted sum of these masses in combination with a contact point form an inverted pendulum. We then generate statically stable poses by specifying a desired upright pendulum orientation, and any desired trunk orientation. Limb and trunk placement strategies are utilised to meet the reference CoM position. A set of these poses is interpolated to achieve stable whole body motions. The approach is evaluated by performing several motions with an igus Humanoid Open Platform robot. We demonstrate the extendability of the approach by applying basic feedback mechanisms for disturbance rejection and tracking error minimisation.Comment: International Conference on Humanoid Robots (Humanoids), Beijing, China, 201

    RoboCup 2019 AdultSize Winner NimbRo: Deep Learning Perception, In-Walk Kick, Push Recovery, and Team Play Capabilities

    Full text link
    Individual and team capabilities are challenged every year by rule changes and the increasing performance of the soccer teams at RoboCup Humanoid League. For RoboCup 2019 in the AdultSize class, the number of players (2 vs. 2 games) and the field dimensions were increased, which demanded for team coordination and robust visual perception and localization modules. In this paper, we present the latest developments that lead team NimbRo to win the soccer tournament, drop-in games, technical challenges and the Best Humanoid Award of the RoboCup Humanoid League 2019 in Sydney. These developments include a deep learning vision system, in-walk kicks, step-based push-recovery, and team play strategies

    Fast Whole-Body Motion Control of Humanoid Robots with Inertia Constraints

    Full text link
    We introduce a new, analytical method for generating whole-body motions for humanoid robots, which approximate the desired Composite Rigid Body (CRB) inertia. Our approach uses a reduced five mass model, where four of the masses are attributed to the limbs and one is used for the trunk. This compact formulation allows for finding an analytical solution that combines the kinematics with mass distribution and inertial properties of a humanoid robot. The positioning of the masses in Cartesian space is then directly used to obtain joint angles with relations based on simple geometry. Motions are achieved through the time evolution of poses generated through the desired foot positioning and CRB inertia properties. As a result, we achieve short computation times in the order of tens of microseconds. This makes the method suited for applications with limited computation resources, or leaving them to be spent on higher-layer tasks such as model predictive control. The approach is evaluated by performing a dynamic kicking motion with an igus Humanoid Open Platform robot.Comment: In Proceedings of IEEE International Conference on Robotics and Automation (ICRA), Paris, France, May 202
    corecore