5 research outputs found

    Onions based on universal re-encryption – anonymous communication immune against repetitive attack

    No full text
    Abstract. Encapsulating messages in onions is one of the major techniques providing anonymous communication in computer networks. To some extent, it provides security against traffic analysis by a passive adversary. However, it can be highly vulnerable to attacks by an active adversary. For instance, the adversary may perform a simple so–called repetitive attack: a malicious server sends the same massage twice, then the adversary traces places where the same message appears twice – revealing the route of the original message. A repetitive attack was examined for mix–networks. However, none of the countermeasures designed is suitable for onion–routing. In this paper we propose an “onion-like ” encoding design based on universal reencryption. The onions constructed in this way can be used in a protocol that achieves the same goals as the classical onions, however, at the same time we achieve immunity against a repetitive attack. Even if an adversary disturbs communication and prevents processing a message somewhere on the onion path, it is easy to identify the malicious server performing the attack and provide an evidence of its illegal behavior

    Identity-Based Encryption for Fair Anonymity Applications: Defining, Implementing, and Applying Rerandomizable RCCA-secure IBE

    Get PDF
    Our context is anonymous encryption schemes hiding their receiver, but in a setting which allows authorities to reveal the receiver when needed. While anonymous Identity-Based Encryption (IBE) is a natural candidate for such fair anonymity (it gives trusted authority access by design), the de facto security standard (a.k.a. IND-ID-CCA) is incompatible with the ciphertext rerandomizability which is crucial to anonymous communication. Thus, we seek to extend IND-ID-CCA security for IBE to a notion that can be meaningfully relaxed for rerandomizability while it still protects against active adversaries. To the end, inspired by the notion of replayable adaptive chosen-ciphertext attack (RCCA) security (Canetti et al., Crypto\u2703), we formalize a new security notion called Anonymous Identity-Based RCCA (ANON-ID-RCCA) security for rerandomizable IBE and propose the first construction with rigorous security analysis. The core of our scheme is a novel extension of the double-strand paradigm, which was originally proposed by Golle et al. (CT-RSA\u2704) and later extended by Prabhakaran and Rosulek (Crypto\u2707), to the well-known Gentry-IBE (Eurocrypt\u2706). Notably, our scheme is the first IBE that simultaneously satisfies adaptive security, rerandomizability, and recipient-anonymity to date. As the application of our new notion, we design a new universal mixnet in the identity-based setting that does not require public key distribution (with fair anonymity). More generally, our new notion is also applicable to most existing rerandomizable RCCA-secure applications to eliminate the need for public key distribution infrastructure while allowing fairness
    corecore