9,010 research outputs found

    Weak-Strong uniqueness for compressible Navier-Stokes system with degenerate viscosity coefficient and vacuum in one dimension

    Full text link
    We prove weak-strong uniqueness results for the compressible Navier-Stokes system with degenerate viscosity coefficient and with vacuum in one dimension. In other words, we give conditions on the weak solution constructed in \cite{Jiu} so that it is unique. The novelty consists in dealing with initial density ρ0\rho_0 which contains vacuum. To do this we use the notion of relative entropy developed recently by Germain, Feireisl et al and Mellet and Vasseur (see \cite{PG,Fei,15}) combined with a new formulation of the compressible system (\cite{cras,CPAM,CPAM1,para}) (more precisely we introduce a new effective velocity which makes the system parabolic on the density and hyperbolic on this velocity).Comment: arXiv admin note: text overlap with arXiv:1411.550

    A Compact Third-order Gas-kinetic Scheme for Compressible Euler and Navier-Stokes Equations

    Full text link
    In this paper, a compact third-order gas-kinetic scheme is proposed for the compressible Euler and Navier-Stokes equations. The main reason for the feasibility to develop such a high-order scheme with compact stencil, which involves only neighboring cells, is due to the use of a high-order gas evolution model. Besides the evaluation of the time-dependent flux function across a cell interface, the high-order gas evolution model also provides an accurate time-dependent solution of the flow variables at a cell interface. Therefore, the current scheme not only updates the cell averaged conservative flow variables inside each control volume, but also tracks the flow variables at the cell interface at the next time level. As a result, with both cell averaged and cell interface values the high-order reconstruction in the current scheme can be done compactly. Different from using a weak formulation for high-order accuracy in the Discontinuous Galerkin (DG) method, the current scheme is based on the strong solution, where the flow evolution starting from a piecewise discontinuous high-order initial data is precisely followed. The cell interface time-dependent flow variables can be used for the initial data reconstruction at the beginning of next time step. Even with compact stencil, the current scheme has third-order accuracy in the smooth flow regions, and has favorable shock capturing property in the discontinuous regions. Many test cases are used to validate the current scheme. In comparison with many other high-order schemes, the current method avoids the use of Gaussian points for the flux evaluation along the cell interface and the multi-stage Runge-Kutta time stepping technique.Comment: 27 pages, 38 figure
    corecore