7,104 research outputs found

    One-Sided Unsupervised Domain Mapping

    Full text link
    In unsupervised domain mapping, the learner is given two unmatched datasets AA and BB. The goal is to learn a mapping GABG_{AB} that translates a sample in AA to the analog sample in BB. Recent approaches have shown that when learning simultaneously both GABG_{AB} and the inverse mapping GBAG_{BA}, convincing mappings are obtained. In this work, we present a method of learning GABG_{AB} without learning GBAG_{BA}. This is done by learning a mapping that maintains the distance between a pair of samples. Moreover, good mappings are obtained, even by maintaining the distance between different parts of the same sample before and after mapping. We present experimental results that the new method not only allows for one sided mapping learning, but also leads to preferable numerical results over the existing circularity-based constraint. Our entire code is made publicly available at https://github.com/sagiebenaim/DistanceGAN .Comment: to be published in NIPS 201

    Unsupervised Shadow Removal Using Target Consistency Generative Adversarial Network

    Full text link
    Unsupervised shadow removal aims to learn a non-linear function to map the original image from shadow domain to non-shadow domain in the absence of paired shadow and non-shadow data. In this paper, we develop a simple yet efficient target-consistency generative adversarial network (TC-GAN) for the shadow removal task in the unsupervised manner. Compared with the bidirectional mapping in cycle-consistency GAN based methods for shadow removal, TC-GAN tries to learn a one-sided mapping to cast shadow images into shadow-free ones. With the proposed target-consistency constraint, the correlations between shadow images and the output shadow-free image are strictly confined. Extensive comparison experiments results show that TC-GAN outperforms the state-of-the-art unsupervised shadow removal methods by 14.9% in terms of FID and 31.5% in terms of KID. It is rather remarkable that TC-GAN achieves comparable performance with supervised shadow removal methods

    A Theory of Output-Side Unsupervised Domain Adaptation

    Full text link
    When learning a mapping from an input space to an output space, the assumption that the sample distribution of the training data is the same as that of the test data is often violated. Unsupervised domain shift methods adapt the learned function in order to correct for this shift. Previous work has focused on utilizing unlabeled samples from the target distribution. We consider the complementary problem in which the unlabeled samples are given post mapping, i.e., we are given the outputs of the mapping of unknown samples from the shifted domain. Two other variants are also studied: the two sided version, in which unlabeled samples are give from both the input and the output spaces, and the Domain Transfer problem, which was recently formalized. In all cases, we derive generalization bounds that employ discrepancy terms

    Attention-GAN for Object Transfiguration in Wild Images

    Full text link
    This paper studies the object transfiguration problem in wild images. The generative network in classical GANs for object transfiguration often undertakes a dual responsibility: to detect the objects of interests and to convert the object from source domain to target domain. In contrast, we decompose the generative network into two separat networks, each of which is only dedicated to one particular sub-task. The attention network predicts spatial attention maps of images, and the transformation network focuses on translating objects. Attention maps produced by attention network are encouraged to be sparse, so that major attention can be paid to objects of interests. No matter before or after object transfiguration, attention maps should remain constant. In addition, learning attention network can receive more instructions, given the available segmentation annotations of images. Experimental results demonstrate the necessity of investigating attention in object transfiguration, and that the proposed algorithm can learn accurate attention to improve quality of generated images

    Sem-GAN: Semantically-Consistent Image-to-Image Translation

    Full text link
    Unpaired image-to-image translation is the problem of mapping an image in the source domain to one in the target domain, without requiring corresponding image pairs. To ensure the translated images are realistically plausible, recent works, such as Cycle-GAN, demands this mapping to be invertible. While, this requirement demonstrates promising results when the domains are unimodal, its performance is unpredictable in a multi-modal scenario such as in an image segmentation task. This is because, invertibility does not necessarily enforce semantic correctness. To this end, we present a semantically-consistent GAN framework, dubbed Sem-GAN, in which the semantics are defined by the class identities of image segments in the source domain as produced by a semantic segmentation algorithm. Our proposed framework includes consistency constraints on the translation task that, together with the GAN loss and the cycle-constraints, enforces that the images when translated will inherit the appearances of the target domain, while (approximately) maintaining their identities from the source domain. We present experiments on several image-to-image translation tasks and demonstrate that Sem-GAN improves the quality of the translated images significantly, sometimes by more than 20% on the FCN score. Further, we show that semantic segmentation models, trained with synthetic images translated via Sem-GAN, leads to significantly better segmentation results than other variants

    One-Shot Unsupervised Cross Domain Translation

    Full text link
    Given a single image x from domain A and a set of images from domain B, our task is to generate the analogous of x in B. We argue that this task could be a key AI capability that underlines the ability of cognitive agents to act in the world and present empirical evidence that the existing unsupervised domain translation methods fail on this task. Our method follows a two step process. First, a variational autoencoder for domain B is trained. Then, given the new sample x, we create a variational autoencoder for domain A by adapting the layers that are close to the image in order to directly fit x, and only indirectly adapt the other layers. Our experiments indicate that the new method does as well, when trained on one sample x, as the existing domain transfer methods, when these enjoy a multitude of training samples from domain A. Our code is made publicly available at https://github.com/sagiebenaim/OneShotTranslationComment: Published at NIPS 201

    Estimating the Success of Unsupervised Image to Image Translation

    Full text link
    While in supervised learning, the validation error is an unbiased estimator of the generalization (test) error and complexity-based generalization bounds are abundant, no such bounds exist for learning a mapping in an unsupervised way. As a result, when training GANs and specifically when using GANs for learning to map between domains in a completely unsupervised way, one is forced to select the hyperparameters and the stopping epoch by subjectively examining multiple options. We propose a novel bound for predicting the success of unsupervised cross domain mapping methods, which is motivated by the recently proposed Simplicity Principle. The bound can be applied both in expectation, for comparing hyperparameters and for selecting a stopping criterion, or per sample, in order to predict the success of a specific cross-domain translation. The utility of the bound is demonstrated in an extensive set of experiments employing multiple recent algorithms. Our code is available at https://github.com/sagiebenaim/gan_bound .Comment: The first and second authors contributed equall

    Batch weight for domain adaptation with mass shift

    Full text link
    Unsupervised domain transfer is the task of transferring or translating samples from a source distribution to a different target distribution. Current solutions unsupervised domain transfer often operate on data on which the modes of the distribution are well-matched, for instance have the same frequencies of classes between source and target distributions. However, these models do not perform well when the modes are not well-matched, as would be the case when samples are drawn independently from two different, but related, domains. This mode imbalance is problematic as generative adversarial networks (GANs), a successful approach in this setting, are sensitive to mode frequency, which results in a mismatch of semantics between source samples and generated samples of the target distribution. We propose a principled method of re-weighting training samples to correct for such mass shift between the transferred distributions, which we call batch-weight. We also provide rigorous probabilistic setting for domain transfer and new simplified objective for training transfer networks, an alternative to complex, multi-component loss functions used in the current state-of-the art image-to-image translation models. The new objective stems from the discrimination of joint distributions and enforces cycle-consistency in an abstract, high-level, rather than pixel-wise, sense. Lastly, we experimentally show the effectiveness of the proposed methods in several image-to-image translation tasks

    Expression Conditional GAN for Facial Expression-to-Expression Translation

    Full text link
    In this paper, we focus on the facial expression translation task and propose a novel Expression Conditional GAN (ECGAN) which can learn the mapping from one image domain to another one based on an additional expression attribute. The proposed ECGAN is a generic framework and is applicable to different expression generation tasks where specific facial expression can be easily controlled by the conditional attribute label. Besides, we introduce a novel face mask loss to reduce the influence of background changing. Moreover, we propose an entire framework for facial expression generation and recognition in the wild, which consists of two modules, i.e., generation and recognition. Finally, we evaluate our framework on several public face datasets in which the subjects have different races, illumination, occlusion, pose, color, content and background conditions. Even though these datasets are very diverse, both the qualitative and quantitative results demonstrate that our approach is able to generate facial expressions accurately and robustly.Comment: 5 pages, 5 figures, accepted to ICIP 201

    Visual Analogies between Atari Games for Studying Transfer Learning in RL

    Full text link
    In this work, we ask the following question: Can visual analogies, learned in an unsupervised way, be used in order to transfer knowledge between pairs of games and even play one game using an agent trained for another game? We attempt to answer this research question by creating visual analogies between a pair of games: a source game and a target game. For example, given a video frame in the target game, we map it to an analogous state in the source game and then attempt to play using a trained policy learned for the source game. We demonstrate convincing visual mapping between four pairs of games (eight mappings), which are used to evaluate three transfer learning approaches
    • …
    corecore