22,375 research outputs found

    Cross domain Residual Transfer Learning for Person Re-identification

    Get PDF
    International audienceThis paper presents a novel way to transfer model weights from one domain to another using residual learning framework instead of direct fine-tuning. It also argues for hybrid models that use learned (deep) features and statistical metric learning for multi-shot person re-identification when training sets are small. This is in contrast to popular end-to-end neural network based models or models that use hand-crafted features with adaptive matching models (neural nets or statistical metrics). Our experiments demonstrate that a hybrid model with residual transfer learning can yield significantly better re-identification performance than an end-to-end model when training set is small. On iLIDS-VID [42] and PRID [15] datasets, we achieve rank-1 recognition rates of 89.8% and 95%, respectively, which is a significant improvement over state-of-the-art

    Multi-shot Pedestrian Re-identification via Sequential Decision Making

    Full text link
    Multi-shot pedestrian re-identification problem is at the core of surveillance video analysis. It matches two tracks of pedestrians from different cameras. In contrary to existing works that aggregate single frames features by time series model such as recurrent neural network, in this paper, we propose an interpretable reinforcement learning based approach to this problem. Particularly, we train an agent to verify a pair of images at each time. The agent could choose to output the result (same or different) or request another pair of images to verify (unsure). By this way, our model implicitly learns the difficulty of image pairs, and postpone the decision when the model does not accumulate enough evidence. Moreover, by adjusting the reward for unsure action, we can easily trade off between speed and accuracy. In three open benchmarks, our method are competitive with the state-of-the-art methods while only using 3% to 6% images. These promising results demonstrate that our method is favorable in both efficiency and performance
    • …
    corecore