3,015 research outputs found

    One-Bit Compressed Sensing by Greedy Algorithms

    Full text link
    Sign truncated matching pursuit (STrMP) algorithm is presented in this paper. STrMP is a new greedy algorithm for the recovery of sparse signals from the sign measurement, which combines the principle of consistent reconstruction with orthogonal matching pursuit (OMP). The main part of STrMP is as concise as OMP and hence STrMP is simple to implement. In contrast to previous greedy algorithms for one-bit compressed sensing, STrMP only need to solve a convex and unconstraint subproblem at each iteration. Numerical experiments show that STrMP is fast and accurate for one-bit compressed sensing compared with other algorithms.Comment: 16 pages, 7 figure

    Quantization and Compressive Sensing

    Get PDF
    Quantization is an essential step in digitizing signals, and, therefore, an indispensable component of any modern acquisition system. This book chapter explores the interaction of quantization and compressive sensing and examines practical quantization strategies for compressive acquisition systems. Specifically, we first provide a brief overview of quantization and examine fundamental performance bounds applicable to any quantization approach. Next, we consider several forms of scalar quantizers, namely uniform, non-uniform, and 1-bit. We provide performance bounds and fundamental analysis, as well as practical quantizer designs and reconstruction algorithms that account for quantization. Furthermore, we provide an overview of Sigma-Delta (ΣΔ\Sigma\Delta) quantization in the compressed sensing context, and also discuss implementation issues, recovery algorithms and performance bounds. As we demonstrate, proper accounting for quantization and careful quantizer design has significant impact in the performance of a compressive acquisition system.Comment: 35 pages, 20 figures, to appear in Springer book "Compressed Sensing and Its Applications", 201

    An Asynchronous Parallel Approach to Sparse Recovery

    Full text link
    Asynchronous parallel computing and sparse recovery are two areas that have received recent interest. Asynchronous algorithms are often studied to solve optimization problems where the cost function takes the form ∑i=1Mfi(x)\sum_{i=1}^M f_i(x), with a common assumption that each fif_i is sparse; that is, each fif_i acts only on a small number of components of x∈Rnx\in\mathbb{R}^n. Sparse recovery problems, such as compressed sensing, can be formulated as optimization problems, however, the cost functions fif_i are dense with respect to the components of xx, and instead the signal xx is assumed to be sparse, meaning that it has only ss non-zeros where s≪ns\ll n. Here we address how one may use an asynchronous parallel architecture when the cost functions fif_i are not sparse in xx, but rather the signal xx is sparse. We propose an asynchronous parallel approach to sparse recovery via a stochastic greedy algorithm, where multiple processors asynchronously update a vector in shared memory containing information on the estimated signal support. We include numerical simulations that illustrate the potential benefits of our proposed asynchronous method.Comment: 5 pages, 2 figure
    • …
    corecore