133 research outputs found

    Sparse Volumetric Deformation

    Get PDF
    Volume rendering is becoming increasingly popular as applications require realistic solid shape representations with seamless texture mapping and accurate filtering. However rendering sparse volumetric data is difficult because of the limited memory and processing capabilities of current hardware. To address these limitations, the volumetric information can be stored at progressive resolutions in the hierarchical branches of a tree structure, and sampled according to the region of interest. This means that only a partial region of the full dataset is processed, and therefore massive volumetric scenes can be rendered efficiently. The problem with this approach is that it currently only supports static scenes. This is because it is difficult to accurately deform massive amounts of volume elements and reconstruct the scene hierarchy in real-time. Another problem is that deformation operations distort the shape where more than one volume element tries to occupy the same location, and similarly gaps occur where deformation stretches the elements further than one discrete location. It is also challenging to efficiently support sophisticated deformations at hierarchical resolutions, such as character skinning or physically based animation. These types of deformation are expensive and require a control structure (for example a cage or skeleton) that maps to a set of features to accelerate the deformation process. The problems with this technique are that the varying volume hierarchy reflects different feature sizes, and manipulating the features at the original resolution is too expensive; therefore the control structure must also hierarchically capture features according to the varying volumetric resolution. This thesis investigates the area of deforming and rendering massive amounts of dynamic volumetric content. The proposed approach efficiently deforms hierarchical volume elements without introducing artifacts and supports both ray casting and rasterization renderers. This enables light transport to be modeled both accurately and efficiently with applications in the fields of real-time rendering and computer animation. Sophisticated volumetric deformation, including character animation, is also supported in real-time. This is achieved by automatically generating a control skeleton which is mapped to the varying feature resolution of the volume hierarchy. The output deformations are demonstrated in massive dynamic volumetric scenes

    APRIL: Approximating Polygons as Raster Interval Lists

    Full text link
    The spatial intersection join an important spatial query operation, due to its popularity and high complexity. The spatial join pipeline takes as input two collections of spatial objects (e.g., polygons). In the filter step, pairs of object MBRs that intersect are identified and passed to the refinement step for verification of the join predicate on the exact object geometries. The bottleneck of spatial join evaluation is in the refinement step. We introduce APRIL, a powerful intermediate step in the pipeline, which is based on raster interval approximations of object geometries. Our technique applies a sequence of interval joins on 'intervalized' object approximations to determine whether the objects intersect or not. Compared to previous work, APRIL approximations are simpler, occupy much less space, and achieve similar pruning effectiveness at a much higher speed. Besides intersection joins between polygons, APRIL can directly be applied and has high effectiveness for polygonal range queries, within joins, and polygon-linestring joins. By applying a lightweight compression technique, APRIL approximations may occupy even less space than object MBRs. Furthermore, APRIL can be customized to apply on partitioned data and on polygons of varying sizes, rasterized at different granularities. Our last contribution is a novel algorithm that computes the APRIL approximation of a polygon without having to rasterize it in full, which is orders of magnitude faster than the computation of other raster approximations. Experiments on real data demonstrate the effectiveness and efficiency of APRIL; compared to the state-of-the-art intermediate filter, APRIL occupies 2x-8x less space, is 3.5x-8.5x more time-efficient, and reduces the end-to-end join cost up to 3 times.Comment: 12 page

    SwiftSpatial: Spatial Joins on Modern Hardware

    Full text link
    Spatial joins are among the most time-consuming queries in spatial data management systems. In this paper, we propose SwiftSpatial, a specialized accelerator architecture tailored for spatial joins. SwiftSpatial contains multiple high-performance join units with innovative hybrid parallelism, several efficient memory management units, and an integrated on-chip join scheduler. We prototype SwiftSpatial on an FPGA and incorporate the R-tree synchronous traversal algorithm as the control flow. Benchmarked against various CPU and GPU-based spatial data processing systems, SwiftSpatial demonstrates a latency reduction of up to 5.36x relative to the best-performing baseline, while requiring 6.16x less power. The remarkable performance and energy efficiency of SwiftSpatial lay a solid foundation for its future integration into spatial data management systems, both in data centers and at the edge

    Adaptive main-memory indexing for high-performance point-polygon joins

    Get PDF
    Connected mobility applications rely heavily on geospatial joins that associate point data, such as locations of Uber cars, to static polygonal regions, such as city neighborhoods. These joins typically involve expensive geometric computations, which makes it hard to provide an interactive user experience. In this paper, we propose an adaptive polygon index that leverages true hit fltering to avoid expensive geometric computations in most cases. In particular, our approach closely approximates polygons by combining quadtrees with true hit filtering, and stores these approximations in a query-effcient radix tree. Based on this index, we introduce two geospatial join algorithms: an approximate one that guarantees a user-defined precision, and an exact one that adapts to the expected point distribution. In summary, our technique outperforms existing CPU-based joins by up to two orders of magnitude and is competitive with state-of-the-art GPU implementations

    A Case for Geographic Masses

    Get PDF
    Geographic masses, the stuff we deal with that cannot be categorized as geographic objects, comprise a crucial but largely unrecognized component of the core ontology of geographic information. Although masses have been rarely acknowledged in GIScience, they appear in geographic discourse just as often as objects. A concise but consistent formal definition of a geographic mass particular, which distinguishes a mass from an object, can be applied to any endurant phenomena, enabling a richer understanding of the geographic milieu, and more informed decision making during modeling and analysis processes

    Semantic Mediation of Environmental Observation Datasets through Sensor Observation Services

    Get PDF
    A large volume of environmental observation data is being generated as a result of the observation of many properties at the Earth surface. In parallel, there exists a clear interest in accessing data from different data providers related to the same property, in order to solve concrete problems. Based on such fact, there is also an increasing interest in publishing the above data through open interfaces in the scope of Spatial Data Infraestructures. There have been important advances in the definition of open standards of the Open Geospatial Consortium (OGC) that enable interoperable access to sensor data. Among the proposed interfaces, the Sensor Observation Service (SOS) is having an important impact. We have realized that currently there is no available solution to provide integrated access to various data sources through a SOS interface. This problem shows up two main facets. On the one hand, the heterogeneity among different data sources has to be solved. On the other hand, semantic conflicts that arise during the integration process must also resolved with the help of relevant domain expert knowledge. To solve the problems, the main goal of this thesis is to design and develop a semantic data mediation framework to access any kind of environmental observation dataset, including both relational data sources and multidimensional arrays

    GPU Rasterization for Real-Time Spatial Aggregation over Arbitrary Polygons

    Get PDF
    Visual exploration of spatial data relies heavily on spatial aggregation queries that slice and summarize the data over different regions. These queries comprise computationally-intensive point-in-polygon tests that associate data points to polygonal regions, challenging the responsiveness of visualization tools. This challenge is compounded by the sheer amounts of data, requiring a large number of such tests to be performed. Traditional pre-aggregation approaches are unsuitable in this setting since they fix the query constraints and support only rectangular regions. On the other hand, query constraints are defined interactively in visual analytics systems, and polygons can be of arbitrary shapes. In this paper, we convert a spatial aggregation query into a set of drawing operations on a canvas and leverage the rendering pipeline of the graphics hardware (GPU) to enable interactive response times. Our technique trades-off accuracy for response time by adjusting the canvas resolution, and can even provide accurate results when combined with a polygon index. We evaluate our technique on two large real-world data sets, exhibiting superior performance compared to index-based approaches
    corecore