1,842 research outputs found

    Pseudo-random graphs

    Full text link
    Random graphs have proven to be one of the most important and fruitful concepts in modern Combinatorics and Theoretical Computer Science. Besides being a fascinating study subject for their own sake, they serve as essential instruments in proving an enormous number of combinatorial statements, making their role quite hard to overestimate. Their tremendous success serves as a natural motivation for the following very general and deep informal questions: what are the essential properties of random graphs? How can one tell when a given graph behaves like a random graph? How to create deterministically graphs that look random-like? This leads us to a concept of pseudo-random graphs and the aim of this survey is to provide a systematic treatment of this concept.Comment: 50 page

    The number of Hamiltonian decompositions of regular graphs

    Full text link
    A Hamilton cycle in a graph Γ\Gamma is a cycle passing through every vertex of Γ\Gamma. A Hamiltonian decomposition of Γ\Gamma is a partition of its edge set into disjoint Hamilton cycles. One of the oldest results in graph theory is Walecki's theorem from the 19th century, showing that a complete graph KnK_n on an odd number of vertices nn has a Hamiltonian decomposition. This result was recently greatly extended by K\"{u}hn and Osthus. They proved that every rr-regular nn-vertex graph Γ\Gamma with even degree r=cnr=cn for some fixed c>1/2c>1/2 has a Hamiltonian decomposition, provided n=n(c)n=n(c) is sufficiently large. In this paper we address the natural question of estimating H(Γ)H(\Gamma), the number of such decompositions of Γ\Gamma. Our main result is that H(Γ)=r(1+o(1))nr/2H(\Gamma)=r^{(1+o(1))nr/2}. In particular, the number of Hamiltonian decompositions of KnK_n is n(1−o(1))n2/2n^{(1-o(1))n^2/2}

    Factors and Connected Factors in Tough Graphs with High Isolated Toughness

    Full text link
    In this paper, we show that every 11-tough graph with order and isolated toughness at least r+1r+1 has a factor whose degrees are rr, except for at most one vertex with degree r+1r+1. Using this result, we conclude that every 33-tough graph with order and isolated toughness at least r+1r+1 has a connected factor whose degrees lie in the set {r,r+1}\{r,r+1\}, where r≥3r\ge 3. Also, we show that this factor can be found mm-tree-connected, when GG is a (2m+ϵ)(2m+\epsilon)-tough graph with order and isolated toughness at least r+1r+1, where r≥(2m−1)(2m/ϵ+1)r\ge (2m-1)(2m/\epsilon+1) and ϵ>0\epsilon > 0. Next, we prove that every (m+ϵ)(m+\epsilon)-tough graph of order at least 2m2m with high enough isolated toughness admits an mm-tree-connected factor with maximum degree at most 2m+12m+1. From this result, we derive that every (2+ϵ)(2+\epsilon)-tough graph of order at least three with high enough isolated toughness has a spanning Eulerian subgraph whose degrees lie in the set {2,4}\{2,4\}. In addition, we provide a family of 5/35/3-tough graphs with high enough isolated toughness having no connected even factors with bounded maximum degree
    • …
    corecore