51 research outputs found

    A single chemosensor for multiple analytes: fluorogenic and ratiometric absorbance detection of Zn²⁺, Mg²⁺ and F⁻, and its cell imaging

    Get PDF
    A simple coumarin based sensor 1 has been synthesized from the condensation reaction of 7-hydroxycoumarin and ethylenediamine via the intermediate 7-hydroxy-8-aldehyde-coumarin. As a multiple analysis sensor, 1 can monitor Zn²⁺ with the fluorescence enhanced at 457 nm, and ratiometric detection at 290 nm, 350 nm and 420 nm in DMF/H₂O (1/4, v/v) medium. Sensor 1 can also monitor Mg²⁺ with the fluorescence enhanced at 430 nm, and ratiometric detection at 290 nm, 370 nm and 430 nm in DMF medium through the interaction of chelation enhance fluorescence (CHEF) with metal ions. Furthermore, 1 also can monitor F⁻ with the fluorescence enhanced at 460 nm, and ratiometric detection at 290 nm and 390 nm in DMF medium simultaneously via hydrogen bonding and deprotonation with F− anion. Spectral titration, isothermal titration calorimetry and mass spectrometry revealed that the sensor formed a 1:1 complex with Mg²⁺, Zn²⁺ or F⁻, with stability constants of 4.5 × 10⁶, 3.4 × 10⁶, 8.0 × 10⁴ M⁻1 respectively. The complexation of the ions by 1 was an exothermic reaction driven by entropy processes. Furthermore, the sensor exhibits good membrane-permeability and was capable of monitoring at the intracellular Zn²⁺ level in living cells

    Low Molecular Weight Fluorescent Probes (LMFPs) to Detect the Group 12 Metal Triad

    Get PDF
    Fluorescence sensing, of d-block elements such as Cu2+, Fe3+, Fe2+, Cd2+, Hg2+, and Zn2+ has significantly increased since the beginning of the 21st century. These particular metal ions play essential roles in biological, industrial, and environmental applications, therefore, there has been a drive to measure, detect, and remediate these metal ions. We have chosen to highlight the low molecular weight fluorescent probes (LMFPs) that undergo an optical response upon coordination with the group 12 triad (Zn2+, Cd2+, and Hg2+), as these metals have similar chemical characteristics but behave differently in the environment

    A 2-Styryl-1,8-naphthyridine derivative as a versatile fluorescent probe for the selective recognition of Hg²⁺, Ag⁺ and F⁻ ions by tuning the solvent

    Get PDF
    A novel fluorescent probe 1 has been synthesized by a microwave reaction, and its ion-binding and fluorescence-sensing properties have been investigated under different solvent conditions. The analysis results indicated that probe 1 can act as a multiple analysis probe by simply tuning the solvent. Probe 1 exhibited high selectively toward Hg²⁺ through fluorescence quenching in H₂O/DMF. In H₂O/1,4-dioxane solution, probe 1 selectively recognized and discriminated between Ag⁺ and Hg²⁺ displaying ratiometric behaviour. Moreover, probe 1 readily recognized the anion F⁻ via the ratiometric fluorescent mode in CH3CN. Furthermore, distinct colour changes were observed under UV light, which can be seen by the naked eye and thus used for distinguishing Hg²⁺, Ag+ and F⁻ from the other ions screened herein using probe 1. Interestingly, almost pure white light emission was evident by simply tuning the F⁻ anion-concentration, which makes this system a potential candidate for smart and tunable luminescent materials

    Recent Advances in Macrocyclic Fluorescent Probes for Ion Sensing

    Get PDF
    Small-molecule fluorescent probes play a myriad of important roles in chemical sensing. Many such systems incorporating a receptor component designed to recognise and bind a specific analyte, and a reporter or transducer component which signals the binding event with a change in fluorescence output have been developed. Fluorescent probes use a variety of mechanisms to transmit the binding event to the reporter unit, including photoinduced electron transfer (PET), charge transfer (CT), Förster resonance energy transfer (FRET), excimer formation, and aggregation induced emission (AIE) or aggregation caused quenching (ACQ). These systems respond to a wide array of potential analytes including protons, metal cations, anions, carbohydrates, and other biomolecules. This review surveys important new fluorescence-based probes for these and other analytes that have been reported over the past five years, focusing on the most widely exploited macrocyclic recognition components, those based on cyclam, calixarenes, cyclodextrins and crown ethers; other macrocyclic and non-macrocyclic receptors are also discussed

    Novel Sensors for the Detection of Biologically Important Species

    Get PDF

    Supramolecular Luminescent Sensors

    Get PDF
    There is great need for stand-alone luminescence-based chemosensors that exemplify selectivity, sensitivity, and applicability and that overcome the challenges that arise from complex, real-world media. Discussed herein are recent developments toward these goals in the field of supramolecular luminescent chemosensors, including macrocycles, polymers, and nanomaterials. Specific focus is placed on the development of new macrocycle hosts since 2010, coupled with considerations of the underlying principles of supramolecular chemistry as well as analytes of interest and common luminophores. State-of-the-art developments in the fields of polymer and nanomaterial sensors are also examined, and some remaining unsolved challenges in the area of chemosensors are discussed
    corecore