1,928 research outputs found

    Proving Termination of Graph Transformation Systems using Weighted Type Graphs over Semirings

    Full text link
    We introduce techniques for proving uniform termination of graph transformation systems, based on matrix interpretations for string rewriting. We generalize this technique by adapting it to graph rewriting instead of string rewriting and by generalizing to ordered semirings. In this way we obtain a framework which includes the tropical and arctic type graphs introduced in a previous paper and a new variant of arithmetic type graphs. These type graphs can be used to assign weights to graphs and to show that these weights decrease in every rewriting step in order to prove termination. We present an example involving counters and discuss the implementation in the tool Grez

    Weighted Pushdown Systems with Indexed Weight Domains

    Full text link
    The reachability analysis of weighted pushdown systems is a very powerful technique in verification and analysis of recursive programs. Each transition rule of a weighted pushdown system is associated with an element of a bounded semiring representing the weight of the rule. However, we have realized that the restriction of the boundedness is too strict and the formulation of weighted pushdown systems is not general enough for some applications. To generalize weighted pushdown systems, we first introduce the notion of stack signatures that summarize the effect of a computation of a pushdown system and formulate pushdown systems as automata over the monoid of stack signatures. We then generalize weighted pushdown systems by introducing semirings indexed by the monoid and weaken the boundedness to local boundedness

    Soft Concurrent Constraint Programming

    Full text link
    Soft constraints extend classical constraints to represent multiple consistency levels, and thus provide a way to express preferences, fuzziness, and uncertainty. While there are many soft constraint solving formalisms, even distributed ones, by now there seems to be no concurrent programming framework where soft constraints can be handled. In this paper we show how the classical concurrent constraint (cc) programming framework can work with soft constraints, and we also propose an extension of cc languages which can use soft constraints to prune and direct the search for a solution. We believe that this new programming paradigm, called soft cc (scc), can be also very useful in many web-related scenarios. In fact, the language level allows web agents to express their interaction and negotiation protocols, and also to post their requests in terms of preferences, and the underlying soft constraint solver can find an agreement among the agents even if their requests are incompatible.Comment: 25 pages, 4 figures, submitted to the ACM Transactions on Computational Logic (TOCL), zipped file
    corecore