1,300 research outputs found

    Tsallis-INF: An Optimal Algorithm for Stochastic and Adversarial Bandits

    Full text link
    We derive an algorithm that achieves the optimal (within constants) pseudo-regret in both adversarial and stochastic multi-armed bandits without prior knowledge of the regime and time horizon. The algorithm is based on online mirror descent (OMD) with Tsallis entropy regularization with power α=1/2\alpha=1/2 and reduced-variance loss estimators. More generally, we define an adversarial regime with a self-bounding constraint, which includes stochastic regime, stochastically constrained adversarial regime (Wei and Luo), and stochastic regime with adversarial corruptions (Lykouris et al.) as special cases, and show that the algorithm achieves logarithmic regret guarantee in this regime and all of its special cases simultaneously with the adversarial regret guarantee.} The algorithm also achieves adversarial and stochastic optimality in the utility-based dueling bandit setting. We provide empirical evaluation of the algorithm demonstrating that it significantly outperforms UCB1 and EXP3 in stochastic environments. We also provide examples of adversarial environments, where UCB1 and Thompson Sampling exhibit almost linear regret, whereas our algorithm suffers only logarithmic regret. To the best of our knowledge, this is the first example demonstrating vulnerability of Thompson Sampling in adversarial environments. Last, but not least, we present a general stochastic analysis and a general adversarial analysis of OMD algorithms with Tsallis entropy regularization for α[0,1]\alpha\in[0,1] and explain the reason why α=1/2\alpha=1/2 works best

    Adaptation to Easy Data in Prediction with Limited Advice

    Full text link
    We derive an online learning algorithm with improved regret guarantees for `easy' loss sequences. We consider two types of `easiness': (a) stochastic loss sequences and (b) adversarial loss sequences with small effective range of the losses. While a number of algorithms have been proposed for exploiting small effective range in the full information setting, Gerchinovitz and Lattimore [2016] have shown the impossibility of regret scaling with the effective range of the losses in the bandit setting. We show that just one additional observation per round is sufficient to circumvent the impossibility result. The proposed Second Order Difference Adjustments (SODA) algorithm requires no prior knowledge of the effective range of the losses, ε\varepsilon, and achieves an O(εKTlnK)+O~(εKT4)O(\varepsilon \sqrt{KT \ln K}) + \tilde{O}(\varepsilon K \sqrt[4]{T}) expected regret guarantee, where TT is the time horizon and KK is the number of actions. The scaling with the effective loss range is achieved under significantly weaker assumptions than those made by Cesa-Bianchi and Shamir [2018] in an earlier attempt to circumvent the impossibility result. We also provide a regret lower bound of Ω(εTK)\Omega(\varepsilon\sqrt{T K}), which almost matches the upper bound. In addition, we show that in the stochastic setting SODA achieves an O(a:Δa>0K3ε2Δa)O\left(\sum_{a:\Delta_a>0} \frac{K^3 \varepsilon^2}{\Delta_a}\right) pseudo-regret bound that holds simultaneously with the adversarial regret guarantee. In other words, SODA is safe against an unrestricted oblivious adversary and provides improved regret guarantees for at least two different types of `easiness' simultaneously.Comment: Fixed a mistake in the proof and statement of Theorem

    A Relative Exponential Weighing Algorithm for Adversarial Utility-based Dueling Bandits

    Get PDF
    We study the K-armed dueling bandit problem which is a variation of the classical Multi-Armed Bandit (MAB) problem in which the learner receives only relative feedback about the selected pairs of arms. We propose a new algorithm called Relative Exponential-weight algorithm for Exploration and Exploitation (REX3) to handle the adversarial utility-based formulation of this problem. This algorithm is a non-trivial extension of the Exponential-weight algorithm for Exploration and Exploitation (EXP3) algorithm. We prove a finite time expected regret upper bound of order O(sqrt(K ln(K)T)) for this algorithm and a general lower bound of order omega(sqrt(KT)). At the end, we provide experimental results using real data from information retrieval applications
    corecore