894 research outputs found

    Canadian Hydrogen Intensity Mapping Experiment (CHIME) Pathfinder

    Full text link
    A pathfinder version of CHIME (the Canadian Hydrogen Intensity Mapping Experiment) is currently being commissioned at the Dominion Radio Astrophysical Observatory (DRAO) in Penticton, BC. The instrument is a hybrid cylindrical interferometer designed to measure the large scale neutral hydrogen power spectrum across the redshift range 0.8 to 2.5. The power spectrum will be used to measure the baryon acoustic oscillation (BAO) scale across this poorly probed redshift range where dark energy becomes a significant contributor to the evolution of the Universe. The instrument revives the cylinder design in radio astronomy with a wide field survey as a primary goal. Modern low-noise amplifiers and digital processing remove the necessity for the analog beamforming that characterized previous designs. The Pathfinder consists of two cylinders 37\,m long by 20\,m wide oriented north-south for a total collecting area of 1,500 square meters. The cylinders are stationary with no moving parts, and form a transit instrument with an instantaneous field of view of ∼\sim100\,degrees by 1-2\,degrees. Each CHIME Pathfinder cylinder has a feedline with 64 dual polarization feeds placed every ∼\sim30\,cm which Nyquist sample the north-south sky over much of the frequency band. The signals from each dual-polarization feed are independently amplified, filtered to 400-800\,MHz, and directly sampled at 800\,MSps using 8 bits. The correlator is an FX design, where the Fourier transform channelization is performed in FPGAs, which are interfaced to a set of GPUs that compute the correlation matrix. The CHIME Pathfinder is a 1/10th scale prototype version of CHIME and is designed to detect the BAO feature and constrain the distance-redshift relation.Comment: 20 pages, 12 figures. submitted to Proc. SPIE, Astronomical Telescopes + Instrumentation (2014

    Software Defined Radio Localization using 802.11-style Communications

    Get PDF
    This major qualifying project implements a simple indoor localization system using software defined radio. Both time of arrival and received signal strength methods are used by an array of wireless receivers to trilaterate a cooperative transmitter. The implemented system builds upon an IEEE 802.11b-like communications platform implemented in GNU Radio. Our results indicate substantial room for improvement, particularly in the acquisition of time data. This project contributes a starting point for ongoing research in indoor localization, both through our literature review and system implementation

    Residential Water Meters as Edge Computing Nodes: Disaggregating End Uses and Creating Actionable Information at the Edge

    Get PDF
    We present a new, open source, computationally capable datalogger for collecting and analyzing high temporal resolution residential water use data. Using this device, execution of water end use disaggregation algorithms or other data analytics can be performed directly on existing, analog residential water meters without disrupting their operation, effectively transforming existing water meters into smart, edge computing devices. Computation of water use summaries and classified water end use events directly on the meter minimizes data transmission requirements, reduces requirements for centralized data storage and processing, and reduces latency between data collection and generation of decision-relevant information. The datalogger couples an Arduino microcontroller board for data acquisition with a Raspberry Pi computer that serves as a computational resource. The computational node was developed and calibrated at the Utah Water Research Laboratory (UWRL) and was deployed for testing on the water meter for a single-family residential home in Providence City, UT, USA. Results from field deployments are presented to demonstrate the data collection accuracy, computational functionality, power requirements, communication capabilities, and applicability of the system. The computational node’s hardware design and software are open source, available for potential reuse, and can be adapted to specific research needs

    Efficient channelization on a Graphics Processing Unit

    Full text link
    We present an implementation of a channelizer (F-engine) running on a Graphics Processing Unit (GPU). While not the first GPU implementation of a channelizer, we have put significant effort into optimizing the implementation. We are able to process four antennas each with 2 Gsample/s, 10-bit dual-polarized input and 8-bit output, on a single commodity GPU. This fully utilizes the available PCIe bandwidth of the GPU. The system is not as optimized for a single high-bandwidth antenna, but handles 6.2 Gsample/s, limited by single-core CPU performance.Comment: Submitted to The Journal of Astronomical Telescopes, Instruments, and System

    A formal specification and verification framework for timed security protocols

    Get PDF
    Nowadays, protocols often use time to provide better security. For instance, critical credentials are often associated with expiry dates in system designs. However, using time correctly in protocol design is challenging, due to the lack of time related formal specification and verification techniques. Thus, we propose a comprehensive analysis framework to formally specify as well as automatically verify timed security protocols. A parameterized method is introduced in our framework to handle timing parameters whose values cannot be decided in the protocol design stage. In this work, we first propose timed applied π-calculus as a formal language for specifying timed security protocols. It supports modeling of continuous time as well as application of cryptographic functions. Then, we define its formal semantics based on timed logic rules, which facilitates efficient verification against various authentication and secrecy properties. Given a parameterized security protocol, our method either produces a constraint on the timing parameters which guarantees the security property satisfied by the protocol, or reports an attack that works for any parameter value. The correctness of our verification algorithm has been formally proved. We evaluate our framework with multiple timed and untimed security protocols and successfully find a previously unknown timing attack in Kerberos V

    MediaSync: Handbook on Multimedia Synchronization

    Get PDF
    This book provides an approachable overview of the most recent advances in the fascinating field of media synchronization (mediasync), gathering contributions from the most representative and influential experts. Understanding the challenges of this field in the current multi-sensory, multi-device, and multi-protocol world is not an easy task. The book revisits the foundations of mediasync, including theoretical frameworks and models, highlights ongoing research efforts, like hybrid broadband broadcast (HBB) delivery and users' perception modeling (i.e., Quality of Experience or QoE), and paves the way for the future (e.g., towards the deployment of multi-sensory and ultra-realistic experiences). Although many advances around mediasync have been devised and deployed, this area of research is getting renewed attention to overcome remaining challenges in the next-generation (heterogeneous and ubiquitous) media ecosystem. Given the significant advances in this research area, its current relevance and the multiple disciplines it involves, the availability of a reference book on mediasync becomes necessary. This book fills the gap in this context. In particular, it addresses key aspects and reviews the most relevant contributions within the mediasync research space, from different perspectives. Mediasync: Handbook on Multimedia Synchronization is the perfect companion for scholars and practitioners that want to acquire strong knowledge about this research area, and also approach the challenges behind ensuring the best mediated experiences, by providing the adequate synchronization between the media elements that constitute these experiences

    Dynamic Power Management for Reactive Stream Processing on the SCC Tiled Architecture

    Get PDF
    This article is distributed under the terms of the Creative Commons Attribution 4.0 International License(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.Dynamic voltage and frequency scaling} (DVFS) is a means to adjust the computing capacity and power consumption of computing systems to the application demands. DVFS is generally useful to provide a compromise between computing demands and power consumption, especially in the areas of resource-constrained computing systems. Many modern processors support some form of DVFS. In this article we focus on the development of an execution framework that provides light-weight DVFS support for reactive stream-processing systems (RSPS). RSPS are a common form of embedded control systems, operating in direct response to inputs from their environment. At the execution framework we focus on support for many-core scheduling for parallel execution of concurrent programs. We provide a DVFS strategy for RSPS that is simple and lightweight, to be used for dynamic adaptation of the power consumption at runtime. The simplicity of the DVFS strategy became possible by sole focus on the application domain of RSPS. The presented DVFS strategy does not require specific assumptions about the message arrival rate or the underlying scheduling method. While DVFS is a very active field, in contrast to most existing research, our approach works also for platforms like many-core processors, where the power settings typically cannot be controlled individually for each computational unit. We also support dynamic scheduling with variable workload. While many research results are provided with simulators, in our approach we present a parallel execution framework with experiments conducted on real hardware, using the SCC many-core processor. The results of our experimental evaluation confirm that our simple DVFS strategy provides potential for significant energy saving on RSPS.Peer reviewe

    Development of an oceanographic application in HPC

    Get PDF
    High Performance Computing (HPC) is used for running advanced application programs efficiently, reliably, and quickly. In earlier decades, performance analysis of HPC applications was evaluated based on speed, scalability of threads, memory hierarchy. Now, it is essential to consider the energy or the power consumed by the system while executing an application. In fact, the High Power Consumption (HPC) is one of biggest problems for the High Performance Computing (HPC) community and one of the major obstacles for exascale systems design. The new generations of HPC systems intend to achieve exaflop performances and will demand even more energy to processing and cooling. Nowadays, the growth of HPC systems is limited by energy issues Recently, many research centers have focused the attention on doing an automatic tuning of HPC applications which require a wide study of HPC applications in terms of power efficiency. In this context, this paper aims to propose the study of an oceanographic application, named OceanVar, that implements Domain Decomposition based 4D Variational model (DD-4DVar), one of the most commonly used HPC applications, going to evaluate not only the classic aspects of performance but also aspects related to power efficiency in different case of studies. These work were realized at Bsc (Barcelona Supercomputing Center), Spain within the Mont-Blanc project, performing the test first on HCA server with Intel technology and then on a mini-cluster Thunder with ARM technology. In this work of thesis it was initially explained the concept of assimilation date, the context in which it is developed, and a brief description of the mathematical model 4DVAR. After this problem’s close examination, it was performed a porting from Matlab description of the problem of data-assimilation to its sequential version in C language. Secondly, after identifying the most onerous computational kernels in order of time, it has been developed a parallel version of the application with a parallel multiprocessor programming style, using the MPI (Message Passing Interface) protocol. The experiments results, in terms of performance, have shown that, in the case of running on HCA server, an Intel architecture, values of efficiency of the two most onerous functions obtained, growing the number of process, are approximately equal to 80%. In the case of running on ARM architecture, specifically on Thunder mini-cluster, instead, the trend obtained is labeled as "SuperLinear Speedup" and, in our case, it can be explained by a more efficient use of resources (cache memory access) compared with the sequential case. In the second part of this paper was presented an analysis of the some issues of this application that has impact in the energy efficiency. After a brief discussion about the energy consumption characteristics of the Thunder chip in technological landscape, through the use of a power consumption detector, the Yokogawa Power Meter, values of energy consumption of mini-cluster Thunder were evaluated in order to determine an overview on the power-to-solution of this application to use as the basic standard for successive analysis with other parallel styles. Finally, a comprehensive performance evaluation, targeted to estimate the goodness of MPI parallelization, is conducted using a suitable performance tool named Paraver, developed by BSC. Paraver is such a performance analysis and visualisation tool which can be used to analyse MPI, threaded or mixed mode programmes and represents the key to perform a parallel profiling and to optimise the code for High Performance Computing. A set of graphical representation of these statistics make it easy for a developer to identify performance problems. Some of the problems that can be easily identified are load imbalanced decompositions, excessive communication overheads and poor average floating operations per second achieved. Paraver can also report statistics based on hardware counters, which are provided by the underlying hardware. This project aimed to use Paraver configuration files to allow certain metrics to be analysed for this application. To explain in some way the performance trend obtained in the case of analysis on the mini-cluster Thunder, the tracks were extracted from various case of studies and the results achieved is what expected, that is a drastic drop of cache misses by the case ppn (process per node) = 1 to case ppn = 16. This in some way explains a more efficient use of cluster resources with an increase of the number of processes
    • …
    corecore