15 research outputs found

    Expectation-maximization for logistic regression

    Full text link
    We present a family of expectation-maximization (EM) algorithms for binary and negative-binomial logistic regression, drawing a sharp connection with the variational-Bayes algorithm of Jaakkola and Jordan (2000). Indeed, our results allow a version of this variational-Bayes approach to be re-interpreted as a true EM algorithm. We study several interesting features of the algorithm, and of this previously unrecognized connection with variational Bayes. We also generalize the approach to sparsity-promoting priors, and to an online method whose convergence properties are easily established. This latter method compares favorably with stochastic-gradient descent in situations with marked collinearity

    The perceptron algorithm versus winnow: linear versus logarithmic mistake bounds when few input variables are relevant

    Get PDF
    AbstractWe give an adversary strategy that forces the Perceptron algorithm to make Ω(kN) mistakes in learning monotone disjunctions over N variables with at most k literals. In contrast, Littlestone's algorithm Winnow makes at most O(k log N) mistakes for the same problem. Both algorithms use thresholded linear functions as their hypotheses. However, Winnow does multiplicative updates to its weight vector instead of the additive updates of the Perceptron algorithm. In general, we call an algorithm additive if its weight vector is always a sum of a fixed initial weight vector and some linear combination of already seen instances. Thus, the Perceptron algorithm is an example of an additive algorithm. We show that an adversary can force any additive algorithm to make (N + k −1)2 mistakes in learning a monotone disjunction of at most k literals. Simple experiments show that for k ⪡ N, Winnow clearly outperforms the Perceptron algorithm also on nonadversarial random data

    Stochastic Online Linear Regression: the Forward Algorithm to Replace Ridge

    Get PDF
    International audienceWe consider the problem of online linear regression in the stochastic setting. We derive high probability regret bounds for online ridge regression and the forward algorithm. This enables us to compare online regression algorithms more accurately and eliminate assumptions of bounded observations and predictions. Our study advocates for the use of the forward algorithm in lieu of ridge due to its enhanced bounds and robustness to the regularization parameter. Moreover, we explain how to integrate it in algorithms involving linear function approximation to remove a boundedness assumption without deteriorating theoretical bounds. We showcase this modification in linear bandit settings where it yields improved regret bounds. Last, we provide numerical experiments to illustrate our results and endorse our intuitions

    Stochastic Online Linear Regression: the Forward Algorithm to Replace Ridge

    Get PDF
    International audienceWe consider the problem of online linear regression in the stochastic setting. We derive high probability regret bounds for online ridge regression and the forward algorithm. This enables us to compare online regression algorithms more accurately and eliminate assumptions of bounded observations and predictions. Our study advocates for the use of the forward algorithm in lieu of ridge due to its enhanced bounds and robustness to the regularization parameter. Moreover, we explain how to integrate it in algorithms involving linear function approximation to remove a boundedness assumption without deteriorating theoretical bounds. We showcase this modification in linear bandit settings where it yields improved regret bounds. Last, we provide numerical experiments to illustrate our results and endorse our intuitions

    All Men Count with You, but None Too Much: Information Aggregation and Learning in Prediction Markets.

    Full text link
    Prediction markets are markets that are set up to aggregate information from a population of traders in order to predict the outcome of an event. In this thesis, we consider the problem of designing prediction markets with discernible semantics of aggregation whose syntax is amenable to analysis. For this, we will use tools from computer science (in particular, machine learning), statistics and economics. First, we construct generalized log scoring rules for outcomes drawn from high-dimensional spaces. Next, based on this class of scoring rules, we design the class of exponential family prediction markets. We show that this market mechanism performs an aggregation of private beliefs of traders under various agent models. Finally, we present preliminary results extending this work to understand the dynamics of related markets using probabilistic graphical model techniques. We also consider the problem in reverse: using prediction markets to design machine learning algorithms. In particular, we use the idea of sequential aggregation from prediction markets to design machine learning algorithms that are suited to situations where data arrives sequentially. We focus on the design of algorithms for recommender systems that are robust against cloning attacks and that are guaranteed to perform well even when data is only partially available.PHDComputer Science and EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/111398/1/skutty_1.pd
    corecore