4 research outputs found

    Intelligent Approaches for Routing Protocols In Cognitive Ad-Hoc Networks

    Get PDF
    This dissertation describes the CogNet architecture and five cognitive routing protocols designed to function within this architecture. In this document, I first provide detailed modeling and analysis of CogNet architecture and then provide the detailed approach, mathematical analysis, and simulation results for each of the developed cognitive routing protocols. The fundamental idea for these cognitive routing protocols is that a proper and adaptive network topology should be constructed from network nodes based on predictions using cognitive functions and past experience. The nodes in the cognitive radio network employ machine learning techniques to use past experience and make wise decisions by predicting future network conditions. The cognitive protocol architecture is a cross-layer optimized construct where the lower layer knowledge of the wireless medium is shared with the network layer. This dissertation investigates several intelligent approaches for cognitive routing protocols, such as the multi-channel optimized approach, the scalability optimized cognitive approach, the multi-path optimized approach, and the mobility optimized approach. Analytical and simulation results demonstrate that network performance can be increased significantly by applying cognitive routing protocols

    A Hierarchical Structure towards Securing Data Transmission in Cognitive Radio Networks

    Get PDF
    Cognitive Radio (CR) technology is considered as a promising technology to overcome spectrum scarcity problem in wireless networks, by sharing the spectrum between both unlicensed users (secondary users, (SUs)) and licensed users (primary users, (PUs)), provided that the SUs respect the PUs’ rights to use the spectrum exclusively. An important technical area in cognitive radio networks (CRNs) is wireless security. A secure CRN must meet different security requirements, which are: confidentiality, integrity, availability and authentication. Data confidentiality is a mandatory requirement in cognitive radio networks, generally to maintain the privacy of the data owner (PU or SU). Integrity means that data is transmitted from the source to the destination without alteration. While availability is to release the channels assigned to one SU as soon as a PU wants to use its spectrum. Authentication in CRN means that each node has to authenticate itself before it can use the available spectrum channels. New classes of security threats and challenges in CRNs have been introduced that target the different layers of OSI model and affect the security requirements. Providing strong security may prove to be the most difficult aspect of making CR a long-term commercially-viable concept. Protection of routes used for data transmission is a critical prerequisite to ensure the robustness of iv the routing process. Therefore, route discovery must be done in such a way that lets each node find the best secure path(s) for its data transmission. In this work, network security of CRN is improved through proposing different models that are built to fulfil the security requirements mentioned above. Improving the network security enhances the network performance, taking into consideration the quality of service (QoS) desired by the different network nodes such as bandwidth and time delay. This work aims to combine the spectrum sensing phase and the spectrum management phase, as well as to detect all the adversary nodes that slow down the network performance by selectively holding and not forwarding packets to their next hop(s). We measure the network node’s reliability for using network resources through a value called belief level (BL), which is considered as the main parameter for our entire work. BL is used to monitor the nodes’ behavior during the spectrum sensing phase, and then it is used to form the best path(s) during the spectrum management phase. Particularly, this work follows a hierarchical structure that has three different layers. At the bottom layer, a novel authentication mechanism is developed to fulfil the authentication and the availability security requirements, which ends assigning a belief level (BL) to each node. At the middle layer, the nodes’ behavior during the spectrum sensing phase is monitored to detect all the adversary node(s). Finally, at the top layer, a novel routing algorithm is proposed that uses the nodes’ security (BL) as a routing metric. SUs collaborate with each other to monitor other nodes’ behavior. Users’ data confidentiality and integrity are satisfied through this hierarchical structure that uses the cluster-based, central authority, and nodes collaboration concepts. By doing so, the traffic carried in the CRN is secured and adversary nodes are detected and penalized

    Performance enhancements for single hop and multi-hop meshed high data rate wireless personal area networks

    Get PDF
    The High Data Rate (HDR) Wireless Personal Area Networks (WPANs) typically have a limited operating range and are intended to support demanding multi-media applications at high data rates. In order to extend the communication range, HDR WPANs can operate in a wireless mesh configuration (i.e. enable multiple WPAN clusters) to communicate in a multi-hop fashion. HDR WPANs face several research challenges and some of the open key issues are limited capacity, optimum resource allocation to requesting devices and maintaining Quality of Service (QoS) for real time multimedia flows. Although, there have been some scheduling algorithms proposed for HDR WPANs, the main objective is to maintain the QoS in most cases whereas efficient and fair utilization of network capacity is still largely open for research. This thesis mainly intends to resolve the issues related to capacity of HDR WPANs such as admission control, fair allocation of Channel Time Allocations (CTAs), improvement in capacity through transmission power control, and efficient utilization of time by each flow. A technique which re-orders the time slots to reduce queuing delay for meshed WPANs is also proposed and evaluated. The first contribution aims to improve peer-to-peer connectivity in case of two or more independent piconet devices by proposing an inter-PAN communication framework that is augmented by an admission control strategy to handle the cases when the superframe capacity is congested. The queued devices are prioritized by proposing a parameter called the Rejection Ratio. The second contribution consists of a resource allocation framework for meshed WPANs. The main objectives are to reduce the control traffic due to high volume of channel time reservation requests and introduce an element of fairness in the channel time allocated to requesting devices. The objectives are achieved by using traffic prediction techniques and an estimated backoff procedure to reduce control traffic, and define different policies based on offered traffic for fair allocation of channel time. The centralized scheme uses traffic prediction techniques to use the proposed concept of bulk reservations. Based on the bulk reservations and resource allocation policies, the overall overhead is reduced while an element of fairness is shown to be maintained for certain scenarios. In the third contribution, the concepts of Time Efficiency and CTA switching are introduced to improve communication efficiency and utilization of superframe capacity in meshed WPANs. Two metrics known as Switched Time Slot (STS) and Switched Time Slot with Re-ordering (STS-R) are proposed which aim to achieve the purpose. The final contribution proposes and evaluates a technique called CTA overlappnig to improve capacity in single hop and meshed WPANs using tramission power control. Extensive simulation studies are performed to analyze and to evaluate the proposed techniques. Simulation results demonstrate significant improvements in meshed WPANs performance in terms of capacity utilization, improvement in fairness index for CTA allocation by upto 62% in some cases, reduction in control traffic overhead by upto 70% and reduction in delay for real time flows by more than 10% in some cases.EThOS - Electronic Theses Online ServiceGBUnited Kingdo
    corecore