19,974 research outputs found

    Distributed Deterministic Edge Coloring using Bounded Neighborhood Independence

    Full text link
    We study the {edge-coloring} problem in the message-passing model of distributed computing. This is one of the most fundamental and well-studied problems in this area. Currently, the best-known deterministic algorithms for (2Delta -1)-edge-coloring requires O(Delta) + log-star n time \cite{PR01}, where Delta is the maximum degree of the input graph. Also, recent results of \cite{BE10} for vertex-coloring imply that one can get an O(Delta)-edge-coloring in O(Delta^{epsilon} \cdot \log n) time, and an O(Delta^{1 + epsilon})-edge-coloring in O(log Delta log n) time, for an arbitrarily small constant epsilon > 0. In this paper we devise a drastically faster deterministic edge-coloring algorithm. Specifically, our algorithm computes an O(Delta)-edge-coloring in O(Delta^{epsilon}) + log-star n time, and an O(Delta^{1 + epsilon})-edge-coloring in O(log Delta) + log-star n time. This result improves the previous state-of-the-art {exponentially} in a wide range of Delta, specifically, for 2^{Omega(\log-star n)} \leq Delta \leq polylog(n). In addition, for small values of Delta our deterministic algorithm outperforms all the existing {randomized} algorithms for this problem. On our way to these results we study the {vertex-coloring} problem on the family of graphs with bounded {neighborhood independence}. This is a large family, which strictly includes line graphs of r-hypergraphs for any r = O(1), and graphs of bounded growth. We devise a very fast deterministic algorithm for vertex-coloring graphs with bounded neighborhood independence. This algorithm directly gives rise to our edge-coloring algorithms, which apply to {general} graphs. Our main technical contribution is a subroutine that computes an O(Delta/p)-defective p-vertex coloring of graphs with bounded neighborhood independence in O(p^2) + \log-star n time, for a parameter p, 1 \leq p \leq Delta

    Online and quasi-online colorings of wedges and intervals

    Get PDF
    We consider proper online colorings of hypergraphs defined by geometric regions. We prove that there is an online coloring algorithm that colors NN intervals of the real line using Θ(logN/k)\Theta(\log N/k) colors such that for every point pp, contained in at least kk intervals, not all the intervals containing pp have the same color. We also prove the corresponding result about online coloring a family of wedges (quadrants) in the plane that are the translates of a given fixed wedge. These results contrast the results of the first and third author showing that in the quasi-online setting 12 colors are enough to color wedges (independent of NN and kk). We also consider quasi-online coloring of intervals. In all cases we present efficient coloring algorithms

    Optimal Online Edge Coloring of Planar Graphs with Advice

    Full text link
    Using the framework of advice complexity, we study the amount of knowledge about the future that an online algorithm needs to color the edges of a graph optimally, i.e., using as few colors as possible. For graphs of maximum degree Δ\Delta, it follows from Vizing's Theorem that O(mlogΔ)O(m\log \Delta) bits of advice suffice to achieve optimality, where mm is the number of edges. We show that for graphs of bounded degeneracy (a class of graphs including e.g. trees and planar graphs), only O(m)O(m) bits of advice are needed to compute an optimal solution online, independently of how large Δ\Delta is. On the other hand, we show that Ω(m)\Omega (m) bits of advice are necessary just to achieve a competitive ratio better than that of the best deterministic online algorithm without advice. Furthermore, we consider algorithms which use a fixed number of advice bits per edge (our algorithm for graphs of bounded degeneracy belongs to this class of algorithms). We show that for bipartite graphs, any such algorithm must use at least Ω(mlogΔ)\Omega(m\log \Delta) bits of advice to achieve optimality.Comment: CIAC 201
    corecore