2,881 research outputs found

    Modeling the Resource Requirements of Convolutional Neural Networks on Mobile Devices

    Full text link
    Convolutional Neural Networks (CNNs) have revolutionized the research in computer vision, due to their ability to capture complex patterns, resulting in high inference accuracies. However, the increasingly complex nature of these neural networks means that they are particularly suited for server computers with powerful GPUs. We envision that deep learning applications will be eventually and widely deployed on mobile devices, e.g., smartphones, self-driving cars, and drones. Therefore, in this paper, we aim to understand the resource requirements (time, memory) of CNNs on mobile devices. First, by deploying several popular CNNs on mobile CPUs and GPUs, we measure and analyze the performance and resource usage for every layer of the CNNs. Our findings point out the potential ways of optimizing the performance on mobile devices. Second, we model the resource requirements of the different CNN computations. Finally, based on the measurement, pro ling, and modeling, we build and evaluate our modeling tool, Augur, which takes a CNN configuration (descriptor) as the input and estimates the compute time and resource usage of the CNN, to give insights about whether and how e ciently a CNN can be run on a given mobile platform. In doing so Augur tackles several challenges: (i) how to overcome pro ling and measurement overhead; (ii) how to capture the variance in different mobile platforms with different processors, memory, and cache sizes; and (iii) how to account for the variance in the number, type and size of layers of the different CNN configurations

    EmBench: Quantifying Performance Variations of Deep Neural Networks across Modern Commodity Devices

    Full text link
    In recent years, advances in deep learning have resulted in unprecedented leaps in diverse tasks spanning from speech and object recognition to context awareness and health monitoring. As a result, an increasing number of AI-enabled applications are being developed targeting ubiquitous and mobile devices. While deep neural networks (DNNs) are getting bigger and more complex, they also impose a heavy computational and energy burden on the host devices, which has led to the integration of various specialized processors in commodity devices. Given the broad range of competing DNN architectures and the heterogeneity of the target hardware, there is an emerging need to understand the compatibility between DNN-platform pairs and the expected performance benefits on each platform. This work attempts to demystify this landscape by systematically evaluating a collection of state-of-the-art DNNs on a wide variety of commodity devices. In this respect, we identify potential bottlenecks in each architecture and provide important guidelines that can assist the community in the co-design of more efficient DNNs and accelerators.Comment: Accepted at MobiSys 2019: 3rd International Workshop on Embedded and Mobile Deep Learning (EMDL), 201
    • …
    corecore