7,734 research outputs found

    The zero forcing polynomial of a graph

    Full text link
    Zero forcing is an iterative graph coloring process, where given a set of initially colored vertices, a colored vertex with a single uncolored neighbor causes that neighbor to become colored. A zero forcing set is a set of initially colored vertices which causes the entire graph to eventually become colored. In this paper, we study the counting problem associated with zero forcing. We introduce the zero forcing polynomial of a graph GG of order nn as the polynomial Z(G;x)=∑i=1nz(G;i)xi\mathcal{Z}(G;x)=\sum_{i=1}^n z(G;i) x^i, where z(G;i)z(G;i) is the number of zero forcing sets of GG of size ii. We characterize the extremal coefficients of Z(G;x)\mathcal{Z}(G;x), derive closed form expressions for the zero forcing polynomials of several families of graphs, and explore various structural properties of Z(G;x)\mathcal{Z}(G;x), including multiplicativity, unimodality, and uniqueness.Comment: 23 page

    A Comparison between the Zero Forcing Number and the Strong Metric Dimension of Graphs

    Full text link
    The \emph{zero forcing number}, Z(G)Z(G), of a graph GG is the minimum cardinality of a set SS of black vertices (whereas vertices in V(G)−SV(G)-S are colored white) such that V(G)V(G) is turned black after finitely many applications of "the color-change rule": a white vertex is converted black if it is the only white neighbor of a black vertex. The \emph{strong metric dimension}, sdim(G)sdim(G), of a graph GG is the minimum among cardinalities of all strong resolving sets: W⊆V(G)W \subseteq V(G) is a \emph{strong resolving set} of GG if for any u,v∈V(G)u, v \in V(G), there exists an x∈Wx \in W such that either uu lies on an x−vx-v geodesic or vv lies on an x−ux-u geodesic. In this paper, we prove that Z(G)≤sdim(G)+3r(G)Z(G) \le sdim(G)+3r(G) for a connected graph GG, where r(G)r(G) is the cycle rank of GG. Further, we prove the sharp bound Z(G)≤sdim(G)Z(G) \leq sdim(G) when GG is a tree or a unicyclic graph, and we characterize trees TT attaining Z(T)=sdim(T)Z(T)=sdim(T). It is easy to see that sdim(T+e)−sdim(T)sdim(T+e)-sdim(T) can be arbitrarily large for a tree TT; we prove that sdim(T+e)≥sdim(T)−2sdim(T+e) \ge sdim(T)-2 and show that the bound is sharp.Comment: 8 pages, 5 figure

    Coordinated Beamforming with Relaxed Zero Forcing: The Sequential Orthogonal Projection Combining Method and Rate Control

    Full text link
    In this paper, coordinated beamforming based on relaxed zero forcing (RZF) for K transmitter-receiver pair multiple-input single-output (MISO) and multiple-input multiple-output (MIMO) interference channels is considered. In the RZF coordinated beamforming, conventional zero-forcing interference leakage constraints are relaxed so that some predetermined interference leakage to undesired receivers is allowed in order to increase the beam design space for larger rates than those of the zero-forcing (ZF) scheme or to make beam design feasible when ZF is impossible. In the MISO case, it is shown that the rate-maximizing beam vector under the RZF framework for a given set of interference leakage levels can be obtained by sequential orthogonal projection combining (SOPC). Based on this, exact and approximate closed-form solutions are provided in two-user and three-user cases, respectively, and an efficient beam design algorithm for RZF coordinated beamforming is provided in general cases. Furthermore, the rate control problem under the RZF framework is considered. A centralized approach and a distributed heuristic approach are proposed to control the position of the designed rate-tuple in the achievable rate region. Finally, the RZF framework is extended to MIMO interference channels by deriving a new lower bound on the rate of each user.Comment: Lemma 1 proof corrected; a new SOPC algorithm invented; K > N case considere
    • …
    corecore