18 research outputs found

    Source Broadcasting to the Masses: Separation has a Bounded Loss

    Full text link
    This work discusses the source broadcasting problem, i.e. transmitting a source to many receivers via a broadcast channel. The optimal rate-distortion region for this problem is unknown. The separation approach divides the problem into two complementary problems: source successive refinement and broadcast channel transmission. We provide bounds on the loss incorporated by applying time-sharing and separation in source broadcasting. If the broadcast channel is degraded, it turns out that separation-based time-sharing achieves at least a factor of the joint source-channel optimal rate, and this factor has a positive limit even if the number of receivers increases to infinity. For the AWGN broadcast channel a better bound is introduced, implying that all achievable joint source-channel schemes have a rate within one bit of the separation-based achievable rate region for two receivers, or within log2T\log_2 T bits for TT receivers

    Multihop Diversity in Wideband OFDM Systems: The Impact of Spatial Reuse and Frequency Selectivity

    Full text link
    The goal of this paper is to establish which practical routing schemes for wireless networks are most suitable for wideband systems in the power-limited regime, which is, for example, a practically relevant mode of operation for the analysis of ultrawideband (UWB) mesh networks. For this purpose, we study the tradeoff between energy efficiency and spectral efficiency (known as the power-bandwidth tradeoff) in a wideband linear multihop network in which transmissions employ orthogonal frequency-division multiplexing (OFDM) modulation and are affected by quasi-static, frequency-selective fading. Considering open-loop (fixed-rate) and closed-loop (rate-adaptive) multihop relaying techniques, we characterize the impact of routing with spatial reuse on the statistical properties of the end-to-end conditional mutual information (conditioned on the specific values of the channel fading parameters and therefore treated as a random variable) and on the energy and spectral efficiency measures of the wideband regime. Our analysis particularly deals with the convergence of these end-to-end performance measures in the case of large number of hops, i.e., the phenomenon first observed in \cite{Oyman06b} and named as ``multihop diversity''. Our results demonstrate the realizability of the multihop diversity advantages in the case of routing with spatial reuse for wideband OFDM systems under wireless channel effects such as path-loss and quasi-static frequency-selective multipath fading.Comment: 6 pages, to be published in Proc. 2008 IEEE International Symposium on Spread Spectrum Techniques and Applications (IEEE ISSSTA'08), Bologna, Ital
    corecore