728 research outputs found

    Towards Dual-functional Radar-Communication Systems: Optimal Waveform Design

    Get PDF
    We focus on a dual-functional multi-input-multi-output (MIMO) radar-communication (RadCom) system, where a single transmitter communicates with downlink cellular users and detects radar targets simultaneously. Several design criteria are considered for minimizing the downlink multi-user interference. First, we consider both the omnidirectional and directional beampattern design problems, where the closed-form globally optimal solutions are obtained. Based on these waveforms, we further consider a weighted optimization to enable a flexible trade-off between radar and communications performance and introduce a low-complexity algorithm. The computational costs of the above three designs are shown to be similar to the conventional zero-forcing (ZF) precoding. Moreover, to address the more practical constant modulus waveform design problem, we propose a branch-and-bound algorithm that obtains a globally optimal solution and derive its worst-case complexity as a function of the maximum iteration number. Finally, we assess the effectiveness of the proposed waveform design approaches by numerical results.Comment: 13 pages, 10 figures. This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessibl

    Cognitive Sub-Nyquist Hardware Prototype of a Collocated MIMO Radar

    Full text link
    We present the design and hardware implementation of a radar prototype that demonstrates the principle of a sub-Nyquist collocated multiple-input multiple-output (MIMO) radar. The setup allows sampling in both spatial and spectral domains at rates much lower than dictated by the Nyquist sampling theorem. Our prototype realizes an X-band MIMO radar that can be configured to have a maximum of 8 transmit and 10 receive antenna elements. We use frequency division multiplexing (FDM) to achieve the orthogonality of MIMO waveforms and apply the Xampling framework for signal recovery. The prototype also implements a cognitive transmission scheme where each transmit waveform is restricted to those pre-determined subbands of the full signal bandwidth that the receiver samples and processes. Real-time experiments show reasonable recovery performance while operating as a 4x5 thinned random array wherein the combined spatial and spectral sampling factor reduction is 87.5% of that of a filled 8x10 array.Comment: 5 pages, Compressed Sensing Theory and its Applications to Radar, Sonar and Remote Sensing (CoSeRa) 201

    Co-existence Between a Radar System and a Massive MIMO Wireless Cellular System

    Full text link
    In this paper we consider the uplink of a massive MIMO communication system using 5G New Radio-compliant multiple access, which is to co-exist with a radar system using the same frequency band. We propose a system model taking into account the reverberation (clutter) produced by the radar system at the massive MIMO receiver. Then, we propose several linear receivers for uplink data-detection, ranging by the simple channel-matched beamformer to the zero-forcing and linear minimum mean square error receivers for clutter disturbance rejection. Our results show that the clutter may have a strong effect on the performance of the cellular communication system, but the use of large-scale antenna arrays at the base station is key to provide increased robustness against it, at least as far as data-detection is concerned.Comment: To be presented at 2018 IEEE SPAWC, Kalamata, Greece, June 201

    MU-MIMO Communications with MIMO Radar: From Co-existence to Joint Transmission

    Get PDF
    Beamforming techniques are proposed for a joint multi-input-multi-output (MIMO) radar-communication (RadCom) system, where a single device acts both as a radar and a communication base station (BS) by simultaneously communicating with downlink users and detecting radar targets. Two operational options are considered, where we first split the antennas into two groups, one for radar and the other for communication. Under this deployment, the radar signal is designed to fall into the null-space of the downlink channel. The communication beamformer is optimized such that the beampattern obtained matches the radar's beampattern while satisfying the communication performance requirements. To reduce the optimizations' constraints, we consider a second operational option, where all the antennas transmit a joint waveform that is shared by both radar and communications. In this case, we formulate an appropriate probing beampattern, while guaranteeing the performance of the downlink communications. By incorporating the SINR constraints into objective functions as penalty terms, we further simplify the original beamforming designs to weighted optimizations, and solve them by efficient manifold algorithms. Numerical results show that the shared deployment outperforms the separated case significantly, and the proposed weighted optimizations achieve a similar performance to the original optimizations, despite their significantly lower computational complexity.Comment: 15 pages, 15 figures. This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessibl

    Joint Design of Overlaid Communication Systems and Pulsed Radars

    Full text link
    The focus of this paper is on co-existence between a communication system and a pulsed radar sharing the same bandwidth. Based on the fact that the interference generated by the radar onto the communication receiver is intermittent and depends on the density of scattering objects (such as, e.g., targets), we first show that the communication system is equivalent to a set of independent parallel channels, whereby pre-coding on each channel can be introduced as a new degree of freedom. We introduce a new figure of merit, named the {\em compound rate}, which is a convex combination of rates with and without interference, to be optimized under constraints concerning the signal-to-interference-plus-noise ratio (including {\em signal-dependent} interference due to clutter) experienced by the radar and obviously the powers emitted by the two systems: the degrees of freedom are the radar waveform and the afore-mentioned encoding matrix for the communication symbols. We provide closed-form solutions for the optimum transmit policies for both systems under two basic models for the scattering produced by the radar onto the communication receiver, and account for possible correlation of the signal-independent fraction of the interference impinging on the radar. We also discuss the region of the achievable communication rates with and without interference. A thorough performance assessment shows the potentials and the limitations of the proposed co-existing architecture
    • …
    corecore