12,890 research outputs found

    Phase Retrieval for Sparse Signals: Uniqueness Conditions

    Get PDF
    In a variety of fields, in particular those involving imaging and optics, we often measure signals whose phase is missing or has been irremediably distorted. Phase retrieval attempts the recovery of the phase information of a signal from the magnitude of its Fourier transform to enable the reconstruction of the original signal. A fundamental question then is: "Under which conditions can we uniquely recover the signal of interest from its measured magnitudes?" In this paper, we assume the measured signal to be sparse. This is a natural assumption in many applications, such as X-ray crystallography, speckle imaging and blind channel estimation. In this work, we derive a sufficient condition for the uniqueness of the solution of the phase retrieval (PR) problem for both discrete and continuous domains, and for one and multi-dimensional domains. More precisely, we show that there is a strong connection between PR and the turnpike problem, a classic combinatorial problem. We also prove that the existence of collisions in the autocorrelation function of the signal may preclude the uniqueness of the solution of PR. Then, assuming the absence of collisions, we prove that the solution is almost surely unique on 1-dimensional domains. Finally, we extend this result to multi-dimensional signals by solving a set of 1-dimensional problems. We show that the solution of the multi-dimensional problem is unique when the autocorrelation function has no collisions, significantly improving upon a previously known result.Comment: submitted to IEEE TI

    Signal Recovery in Perturbed Fourier Compressed Sensing

    Full text link
    In many applications in compressed sensing, the measurement matrix is a Fourier matrix, i.e., it measures the Fourier transform of the underlying signal at some specified `base' frequencies {ui}i=1M\{u_i\}_{i=1}^M, where MM is the number of measurements. However due to system calibration errors, the system may measure the Fourier transform at frequencies {ui+δi}i=1M\{u_i + \delta_i\}_{i=1}^M that are different from the base frequencies and where {δi}i=1M\{\delta_i\}_{i=1}^M are unknown. Ignoring perturbations of this nature can lead to major errors in signal recovery. In this paper, we present a simple but effective alternating minimization algorithm to recover the perturbations in the frequencies \emph{in situ} with the signal, which we assume is sparse or compressible in some known basis. In many cases, the perturbations {δi}i=1M\{\delta_i\}_{i=1}^M can be expressed in terms of a small number of unique parameters PMP \ll M. We demonstrate that in such cases, the method leads to excellent quality results that are several times better than baseline algorithms (which are based on existing off-grid methods in the recent literature on direction of arrival (DOA) estimation, modified to suit the computational problem in this paper). Our results are also robust to noise in the measurement values. We also provide theoretical results for (1) the convergence of our algorithm, and (2) the uniqueness of its solution under some restrictions.Comment: New theortical results about uniqueness and convergence now included. More challenging experiments now include
    corecore