5 research outputs found

    Circular choosability is rational

    Get PDF
    AbstractThe circular choosability or circular list chromatic number of a graph is a list-version of the circular chromatic number, that was introduced by Mohar in 2002 and has been studied by several groups of authors since then. One of the nice properties that the circular chromatic number enjoys is that it is a rational number for all finite graphs G, and a fundamental question, posed by Zhu and reiterated by others, is whether the same holds for the circular choosability. In this paper we show that this is indeed the case

    Circular choosability

    Get PDF
    International audienceWe study circular choosability, a notion recently introduced by Mohar and by Zhu. First, we provide a negative answer to a question of Zhu about circular cliques. We next prove that cch(G) = O(ch(G) + ln |V(G)|) for every graph G. We investigate a generalisation of circular choosability, the circular f-choosability, where f is a function of the degrees. We also consider the circular choice number of planar graphs. Mohar asked for the value of Ď„ := sup {cch(G) : G is planar}, and we prove that 68, thereby providing a negative answer to another question of Mohar. We also study the circular choice number of planar and outerplanar graphs with prescribed girth, and graphs with bounded density

    List circular backbone colouring

    Get PDF
    Graph TheoryInternational audienceA natural generalization of graph colouring involves taking colours from a metric space and insisting that the endpoints of an edge receive colours separated by a minimum distance dictated by properties of the edge. In the q-backbone colouring problem, these minimum distances are either q or 1, depending on whether or not the edge is in the backbone. In this paper we consider the list version of this problem, with particular focus on colours in ℤp - this problem is closely related to the problem of circular choosability. We first prove that the list circular q-backbone chromatic number of a graph is bounded by a function of the list chromatic number. We then consider the more general problem in which each edge is assigned an individual distance between its endpoints, and provide bounds using the Combinatorial Nullstellensatz. Through this result and through structural approaches, we achieve good bounds when both the graph and the backbone belong to restricted families of graphs

    ON TWO QUESTIONS ABOUT CIRCULAR CHOOSABILITY

    No full text
    Abstract. We answer two questions of Zhu on circular choosability of graphs. We show that the circular list chromatic number of an even cycle is equal to 2 and give an example of a graph for which the infimum in the definition of the circular list chromatic number is not attained. 1

    On two questions about circular choosability

    No full text
    corecore