91,330 research outputs found

    A core ontology for business process analysis

    Get PDF
    Business Process Management (BPM) aims at supporting the whole life-cycle necessary to deploy and maintain business processes in organisations. An important step of the BPM life-cycle is the analysis of the processes deployed in companies. However, the degree of automation currently achieved cannot support the level of adaptation required by businesses. Initial steps have been performed towards including some sort of automated reasoning within Business Process Analysis (BPA) but this is typically limited to using taxonomies. We present a core ontology aimed at enhancing the state of the art in BPA. The ontology builds upon a Time Ontology and is structured around the process, resource, and object perspectives as typically adopted when analysing business processes. The ontology has been extended and validated by means of an Events Ontology and an Events Analysis Ontology aimed at capturing the audit trails generated by Process-Aware Information Systems and deriving additional knowledge

    A log mining approach for process monitoring in SCADA

    Get PDF
    SCADA (Supervisory Control and Data Acquisition) systems are used for controlling and monitoring industrial processes. We propose a methodology to systematically identify potential process-related threats in SCADA. Process-related threats take place when an attacker gains user access rights and performs actions, which look legitimate, but which are intended to disrupt the SCADA process. To detect such threats, we propose a semi-automated approach of log processing. We conduct experiments on a real-life water treatment facility. A preliminary case study suggests that our approach is effective in detecting anomalous events that might alter the regular process workflow

    Automated Measurement of Adherence to Traumatic Brain Injury (TBI) Guidelines using Neurological ICU Data

    Get PDF
    Using a combination of physiological and treatment information from neurological ICU data-sets, adherence to traumatic brain injury (TBI) guidelines on hypotension, intracranial pressure (ICP) and cerebral perfusion pressure (CPP) is calculated automatically. The ICU output is evaluated to capture pressure events and actions taken by clinical staff for patient management, and are then re-expressed as simplified process models. The official TBI guidelines from the Brain Trauma Foundation are similarly evaluated, so the two structures can be compared and a quantifiable distance between the two calculated (the measure of adherence). The methods used include: the compilation of physiological and treatment information into event logs and subsequently process models; the expression of the BTF guidelines in process models within the real-time context of the ICU; a calculation of distance between the two processes using two algorithms (“Direct” and “Weighted”) building on work conducted in th e business process domain. Results are presented across two categories each with clinical utility (minute-by-minute and single patient stays) using a real ICU data-set. Results of two sample patients using a weighted algorithm show a non-adherence level of 6.25% for 42 mins and 56.25% for 708 mins and non-adherence of 18.75% for 17 minutes and 56.25% for 483 minutes. Expressed as two combinatorial metrics (duration/non-adherence (A) and duration * non-adherence (B)), which together indicate the clinical importance of the non-adherence, one has a mean of A=4.63 and B=10014.16 and the other a mean of A=0.43 and B=500.0
    corecore