3,317 research outputs found

    On the vertices belonging to all, some, none minimum dominating set

    Get PDF
    11 figuresWe characterize the vertices belonging to all minimum dominating sets, to some minimum dominating sets but not all, and to no minimum dominating set. We refine this characterization for some well studied sub-classes of graphs: chordal, claw-free, triangle-free. Also we exhibit some graphs answering to some open questions of the literature on minimum dominating sets

    Locating-dominating sets and identifying codes in graphs of girth at least 5

    Full text link
    Locating-dominating sets and identifying codes are two closely related notions in the area of separating systems. Roughly speaking, they consist in a dominating set of a graph such that every vertex is uniquely identified by its neighbourhood within the dominating set. In this paper, we study the size of a smallest locating-dominating set or identifying code for graphs of girth at least 5 and of given minimum degree. We use the technique of vertex-disjoint paths to provide upper bounds on the minimum size of such sets, and construct graphs who come close to meet these bounds.Comment: 20 pages, 9 figure

    On global location-domination in graphs

    Full text link
    A dominating set SS of a graph GG is called locating-dominating, LD-set for short, if every vertex vv not in SS is uniquely determined by the set of neighbors of vv belonging to SS. Locating-dominating sets of minimum cardinality are called LDLD-codes and the cardinality of an LD-code is the location-domination number λ(G)\lambda(G). An LD-set SS of a graph GG is global if it is an LD-set of both GG and its complement G\overline{G}. The global location-domination number λg(G)\lambda_g(G) is the minimum cardinality of a global LD-set of GG. In this work, we give some relations between locating-dominating sets and the location-domination number in a graph and its complement.Comment: 15 pages: 2 tables; 8 figures; 20 reference
    corecore