779 research outputs found

    Packet analysis for network forensics: A comprehensive survey

    Get PDF
    Packet analysis is a primary traceback technique in network forensics, which, providing that the packet details captured are sufficiently detailed, can play back even the entire network traffic for a particular point in time. This can be used to find traces of nefarious online behavior, data breaches, unauthorized website access, malware infection, and intrusion attempts, and to reconstruct image files, documents, email attachments, etc. sent over the network. This paper is a comprehensive survey of the utilization of packet analysis, including deep packet inspection, in network forensics, and provides a review of AI-powered packet analysis methods with advanced network traffic classification and pattern identification capabilities. Considering that not all network information can be used in court, the types of digital evidence that might be admissible are detailed. The properties of both hardware appliances and packet analyzer software are reviewed from the perspective of their potential use in network forensics

    A 5G Automated Guided Vehicle SME testbed for resilient future factories

    Get PDF
    Factory automation design engineers building the Smart Factory can use wireless 5G broadband networks for added design flexibility. 5G New Radio builds upon previous cellular communications standards to include technology for “massive machine-type communication” and “ultra-reliable and low-latency communication”. In this work, the authors augment an automated guided vehicle with 5G for additional capabilities (e.g., streaming high-resolution video and enabling long-distance teleoperation), increasing the mobile applications for industrial equipment. Such use cases will provide valuable knowledge to engineers examining 5G for novel smart manufacturing solutions. Our 5G private network testbed is a platform for wireless performance research in industrial locations and provides a development mule for flexible smart manufacturing systems. The rival wireless technology to 5G in industrial settings is Wi-Fi and it is included in the testbed. Furthermore, the authors noted challenges, often unconsidered, facing the move to digital manufacturing technologies. Therefore, the authors summarise the emerging challenges when implementing new digital factory systems, including challenges linked to societal concerns around sustainability and supply chain resilience. The new Smart Factory technologies, including 5G communications, will have their roles to play in alleviating these challenges and ensuring economies have resilient future factories

    Dynamic services in mobile ad hoc networks

    Get PDF
    The increasing diffusion of wireless-enabled portable devices is pushing toward the design of novel service scenarios, promoting temporary and opportunistic interactions in infrastructure-less environments. Mobile Ad Hoc Networks (MANET) are the general model of these higly dynamic networks that can be specialized, depending on application cases, in more specific and refined models such as Vehicular Ad Hoc Networks and Wireless Sensor Networks. Two interesting deployment cases are of increasing relevance: resource diffusion among users equipped with portable devices, such as laptops, smart phones or PDAs in crowded areas (termed dense MANET) and dissemination/indexing of monitoring information collected in Vehicular Sensor Networks. The extreme dynamicity of these scenarios calls for novel distributed protocols and services facilitating application development. To this aim we have designed middleware solutions supporting these challenging tasks. REDMAN manages, retrieves, and disseminates replicas of software resources in dense MANET; it implements novel lightweight protocols to maintain a desired replication degree despite participants mobility, and efficiently perform resource retrieval. REDMAN exploits the high-density assumption to achieve scalability and limited network overhead. Sensed data gathering and distributed indexing in Vehicular Networks raise similar issues: we propose a specific middleware support, called MobEyes, exploiting node mobility to opportunistically diffuse data summaries among neighbor vehicles. MobEyes creates a low-cost opportunistic distributed index to query the distributed storage and to determine the location of needed information. Extensive validation and testing of REDMAN and MobEyes prove the effectiveness of our original solutions in limiting communication overhead while maintaining the required accuracy of replication degree and indexing completeness, and demonstrates the feasibility of the middleware approach

    ACUTA Journal of Telecommunications in Higher Education

    Get PDF
    In This Issue Technology Advances: The View from 10,000 Feet WAP: Are You Ready for a Wireless World? Virtual Private Networks: How They Can Work for Colleges and Universities Network Security: How\u27s Your Posture? Software for Rent: Contact ASP Voicing My IPinion Institutional Excellence Award: Colorado Christian University Columns Interview Book Revie

    Towards reliable logging in the internet of things networks

    Get PDF
    The internet of things is one of the most rapidly developing technologies, and its low cost and usability make it applicable to various critical disciplines. Being a component of such critical infrastructure needs, these networks have to be dependable and offer the best outcome. Keeping track of network events is one method for enhancing network reliability, as network event logging supports essential processes such as debugging, checkpointing, auditing, root-cause analysis, and forensics. However, logging in the IoT networks is not a simple task. IoT devices are positioned in remote places with unstable connectivity and inadequate security protocols, making them vulnerable to environmental flaws and security breaches. This thesis investigates the problem of reliable logging in IoT networks. We concentrate on the problem in the presence of Byzantine behaviour and the integration of logging middleware into the network stack. To overcome these concerns, we propose a technique for distributed logging by distributing loggers around the network. We define the logger selection problem and the collection problem, and show that only the probabilistic weak variant can solve the problem. We examine the performance of the Collector algorithm in several MAC setups. We then explore the auditability notion in IoT; we show how safety specification can be enforced through the analogies of fair exchange. Next, we review our findings and their place in the existing body of knowledge. We also explore the limits we faced when investigating this problem, and we finish this thesis by providing opportunities for future work

    Wi-Fi Enabled Healthcare

    Get PDF
    Focusing on its recent proliferation in hospital systems, Wi-Fi Enabled Healthcare explains how Wi-Fi is transforming clinical work flows and infusing new life into the types of mobile devices being implemented in hospitals. Drawing on first-hand experiences from one of the largest healthcare systems in the United States, it covers the key areas associated with wireless network design, security, and support. Reporting on cutting-edge developments and emerging standards in Wi-Fi technologies, the book explores security implications for each device type. It covers real-time location services and emerging trends in cloud-based wireless architecture. It also outlines several options and design consideration for employee wireless coverage, voice over wireless (including smart phones), mobile medical devices, and wireless guest services. This book presents authoritative insight into the challenges that exist in adding Wi-Fi within a healthcare setting. It explores several solutions in each space along with design considerations and pros and cons. It also supplies an in-depth look at voice over wireless, mobile medical devices, and wireless guest services. The authors provide readers with the technical knowhow required to ensure their systems provide the reliable, end-to-end communications necessary to surmount today’s challenges and capitalize on new opportunities. The shared experience and lessons learned provide essential guidance for large and small healthcare organizations in the United States and around the world. This book is an ideal reference for network design engineers and high-level hospital executives that are thinking about adding or improving upon Wi-Fi in their hospitals or hospital systems

    Demystifying Internet of Things Security

    Get PDF
    Break down the misconceptions of the Internet of Things by examining the different security building blocks available in Intel Architecture (IA) based IoT platforms. This open access book reviews the threat pyramid, secure boot, chain of trust, and the SW stack leading up to defense-in-depth. The IoT presents unique challenges in implementing security and Intel has both CPU and Isolated Security Engine capabilities to simplify it. This book explores the challenges to secure these devices to make them immune to different threats originating from within and outside the network. The requirements and robustness rules to protect the assets vary greatly and there is no single blanket solution approach to implement security. Demystifying Internet of Things Security provides clarity to industry professionals and provides and overview of different security solutions What You'll Learn Secure devices, immunizing them against different threats originating from inside and outside the network Gather an overview of the different security building blocks available in Intel Architecture (IA) based IoT platforms Understand the threat pyramid, secure boot, chain of trust, and the software stack leading up to defense-in-depth Who This Book Is For Strategists, developers, architects, and managers in the embedded and Internet of Things (IoT) space trying to understand and implement the security in the IoT devices/platforms

    Internet of Things From Hype to Reality

    Get PDF
    The Internet of Things (IoT) has gained significant mindshare, let alone attention, in academia and the industry especially over the past few years. The reasons behind this interest are the potential capabilities that IoT promises to offer. On the personal level, it paints a picture of a future world where all the things in our ambient environment are connected to the Internet and seamlessly communicate with each other to operate intelligently. The ultimate goal is to enable objects around us to efficiently sense our surroundings, inexpensively communicate, and ultimately create a better environment for us: one where everyday objects act based on what we need and like without explicit instructions
    • …
    corecore